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1. APPROXIMATION DES DERIVEES PAR DIFFERENCE FINIE

Un probléme qu’on rencontre souvent en analyse numérique est I’approximation
de la dérivée d’une fonction f : [a,b] — R sur un intervalle donné [a, b].

1.1. Méthode générale. Une approche naturelle consiste & introduire n+1
nceuds zy € [a, b] uniformément répartis, c’est-a-dire tels que

To = a, Ty = b, Tpr1 =z +h, Vke{0,...,n—1},

ou

On approche alors f’(x;) en utilisant les valeurs nodales f(xy), dont on
considere avoir 'accés. On note u) Papproximation de f’(x;), donc

uh ~ f'(x;).

De maniére générale, on définit les u) via I'équation

h Z aku;_k: Z ﬁk f(l‘i—k)a (1>

k=—m k=—m/'

ot {ag}, {Br} € R sont m +m’ + 1 coefficients & déterminer, et ot on peut
utiliser la convention u; =0 et f(z;) = 0 pour tout j ¢ {0,...,n}. Cette
équation déterminant une approximation est appelée schéma.

Le cofit du calcul est un critére important dans le choix du schéma, il faut
par exemple noter que si m # 0, la détermination des quantités u requiert

la résolution d’un systéme linéaire.

Definition 1.1 (Stencil). L’ensemble des neuds impliqués dans la construc-
tion de la dérivée de y en un neud donné est appelé stencil.

1.2. Méthodes des différences finies classiques.

1.2.1. Méthode “forward”. Le moyen le plus simple pour construire une for-
mule du type consiste a revenir a la définition de la dérivée. Si f'(z;)
existe, alors

f(@i +h) = f(zi)
. . 2)

Y .
x;) = lim
f( Z) h—0*t
Definition 1.2 (Différence finie progressive). En remplagant la limite par
le taux d’accroissement, avec h fini, on obtient I’approximation
/ f(@ig1) — f(zi)

Ui pp = - , Vie{0,...,n—1}. (3)
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Cette relation est un cas particulier de (1)) ou m =0, ap = 1, m’ = 1,
B-1 =1, o = —1, f1 = 0. Le second membre de (3] est appelé différence
finie progressive, ou “en avant”.

L’approximation que l'on fait revient a remplacer f’(x;) par la pente de
la droite passant par les points (x;, f(x;)) et (xiy1, f(Tit1))-

Pour estimer ’erreur commise, il suffit d’écrire le développement de Taylor
de f (qui sera toujours supposée assez réguliere). En effet, par le théoréme
de Taylor-Lagrange, il existe f3; €]z;, x;y1[ tel que

2
Flaiin) = o) + b/ () + o f(51).
Ainsi,
!/ / h "
fi@i) — Ui FD = —§f (Bi)-

1.2.2. Méthode centrée. Aulieu de , on aurait pu utiliser un taux d’accroissement
centré, obtenant alors I’approximation suivante.

Definition 1.3 (Différence finie centrée).

) f(@iv1) — f(xio1)

ui,CD: oh s \V/'LG {1,,n—1} (4)
Le schéma (4]) est un cas particulier de ounm=20,a0=1 m =1,
681 = %, Go =0, 51 = —%. Le second membre de est appelé dif-

férence finie centrée. Géométriquement, ’approximation revient & remplacer
f'(z;) par la pente de la droite passant par les points (z;—_1, f(x;—1)) et

(wiy1, f(Tig1))-

Lemma 1.4. II existe B; € [x;—1,zi+1] tel que

h2
f(@i) —wiop = —gf(?’)(ﬁi)-

Démonstration. On utilise le développement de Taylor autour de x; aux
points x;11 = x; + h et ;1 = x; — h et le théoréme de Taylor-Lagrange, on
obtient

h? h3

it h) = i) + hf' (@) + 5 f" (@) + gf(g)(ﬁl),
2 3

Flos = B) = Flai) — hf@) + o) — = f ),

ou S E]xi,xi + h[ et B E]xi — h, xz[ Ainsi,
h2
f(@i) —uop = —E(f(?’) (81) + fP(B2)).
Puisque f®) est continue sur |zi — h,z; + h], la moyenne
FE(B1) + f3)(B)
2
est une valeur intermédiaire de f®) sur cet intervalle. Par théoreme des

valeurs intermédiaires, il existe §; €|x; — h, z; + h[ tel que

F®8;) = F®(5) ;‘ f(3)(52)_
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O

La formule fournit donc une approximation de f’(z;) qui est du second
ordre par rapport a h.

1.2.3. Méthode “backward”. Enfin, on peut définir de maniére analogue un
troisiéme schéma.

Definition 1.5 (Différence finie rétrograde).

gy = L0 _hf(xi‘l), Vie{l,...,n}. (5)

L’erreur suivante lui correspond
h
f/(xi) - u;,BD = §f”(5i)a

pour un certain 3; €|x;_1,x;[. Les valeurs des paramétres dans sont
m:O, aozl, m’zletﬁ,le, 50:1, ﬁlz—l.

1.2.4. Approximation de dérivées d’ordres supérieurs. Des schémas d’ordre
élevé, ou encore des approximations par différences finies de dérivées de f
d’ordre supérieur, peuvent étre construits en augmentant ’ordre des développe-
ments de Taylor. Voici un exemple concernant ’approximation de f”. Si
f € C*([a,b]), on obtient

(e = L) 22 ) (50 ) 40, — ).

ou 0 < 0;,w; < 1, d’ott on déduit le schéma aux différences finies centrées

ul! = f(@iy1) — 2];5;31) + f(%’—l), Vie{l,...,n—1}. (6)

L’erreur correspondante est

2
£ (@) = = —% (/D i + 0m) + 1O (i = wih) ).

La formule @ fournit donc une approximation de f”(x;) du second ordre
par rapport a h.

1.2.5. Différences finies compactes. Pour abréger on note fi(k) = fk) (x;) et
fi == f(z;). Des approximations plus précises de f’ sont données par les
formules suivantes

Definition 1.6 (Différences finies compactes). On définit u); via les équations

o (fir1 = fi1) + %(fiﬁ — fiz2), (7)

/ / r
aul-,l + U,L' + OZ’U/,L'+1 = %

ot i €{2,...,n—2}.

Les coefficients a, 8 et v doivent étre déterminés de maniére & ce que les
relations conduisent & des valeurs de w; qui approchent f’(x;) a 'ordre
le plus élevé par rapport a h. Pour cela, on choisit des coefficients qui
minimisent 'erreur de consistance

y (fis1 — fim1) + %(fi—ﬂ —fic2)| - (8)

oi=ofi  + fi+afi, — o
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Nous pouvons donner une définition non rigoureuse mais générale des
erreurs de consistance.

Definition 1.7 (Erreur de consistance). L’erreur de consistance d’un schéma
consiste @ considérer le schéma, a y remplacer la grandeur approrimée par
la grandeur exacte, et a regarder U'erreur qui y est faite.

Definition 1.8 (Erreur de convergence). L’erreur de convergence est lerreur
entre une quantité exacte et son approximation.

On considére une norme |-| sur RV*! quelconque.

Lemma 1.9 (Consistance implique convergence). Considérons un schéma
de différences finies compactes pour approcher f', écrit sous forme matricielle

Av' = BF,

o= W)y F= ()Y, P (fa))Y,

et ot on aw} ~ f'(x;). B peut dépendre de h mais pas A, et A est inversible.
Supposons qu’il existe C > 0 et n € N tels que pour tout h > 0 dans un
voisinage de 0,

|AF" — BF|| < Ch",
qui est Uerreur de consistance. Alors ’erreur de convergence est
Ju' = F| <A™ nm.

Démonstration. On a Au' = BF et on définit I'erreur de consistance o =
(Uz‘)fio par 0 := AF’ — BF. En soustrayant ces deux relations, on obtient
Al — F') = —g et donc v/ — F' = —A~ 0. O

Autrement dit, 'ordre de convergence global est égal a 'ordre de consis-
tance n. Dans @ on a N = 3, et A est une matrice ayant 1 sur sa diagonale
et a en-dessous et au-dessus de sa diagonale. Plus explicitement,

1 a«a 0 --- 0
a 1 « :
: o
0 0 o 1
o 5 0 -2 0
5 5
-3 0 3 0 -3
p_l]lo -5 0 5 0 e RVHD)X(N+1)
B B
o -8 o 8
0

(an)
2
(@n}
|
N[@
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Lemma 1.10 (Ordre 6 des différences finies compactes). Dans le cas de (7)),
il existe un unique schéma d’ordre 6 et il correspond aux parameétres

1 14 1

il = = _. 9
3 B=g 7=g (9)
Démonstration. En supposant que f € C%([a, b]) et en écrivant le développe-
ment de Taylor en z;, on trouve

o =

h? h3 ht E hb
fi:l:l _ fz 4+ hfz/ + ?fZ(Q) + Efl(3) + 7fz'(4) 1720]0(5) + f(G) + O(h7),
frao = fi 4 2hfl + 202 FD) & %hz 5o 4 h4f(4> £ h5 PO 267 19 4 o),

2 3
P @ Pee b @ R e (5) 6
fz:l:l_fz:thfi +2fi iﬁfi +24f¢ 120f +O(h)
Ainsi

h4

afis+ £ +afly = Qa+ D +ah? £ +azs £+ O(h%).

On calcule ensuite

h3 h®
fivr = fimy = 2hf{ 4+ £+ S £+ O(T),
et
8

8
fiva = fia = 4hfj + gthz‘( )+
Par conséquent, le second membre vaut

p

ﬁ(fi—‘rl = fi-1) + %(f"” = fi2)

g (3 B s (- 2 s o

Par substitution dans , on obtient
h? h4
= Qa+Dfl +a [ +ar 17— (B4
h? 2 Rt
—2(§+;>ﬁ$ m<ﬁ+&>#5+mﬁ)

On construit des schémas du second ordre en annulant le coefficient de f/,
c’est-a-dire en imposant

20+ 1= [+,

des schémas d’ordre 4 en annulant aussi le coefficient de fi(3),

6a = 5+ 4y,

et des schémas d’ordre 6 en annulant aussi le coefficient de fl-(5),
10 = 5 + 167.

Le systéme linéaire formé par ces trois derniéres relations est non singulier
et a une unique solution (@

Par le Lemme [I.9] 'erreur de convergence est la méme que l'erreur de
consistance. O



7

Il y a une seule méthode d’ordre 6 mais il existe en revanche une infinité
de méthodes du second et du quatriéme ordre. Parmi celles-ci, citons un
schéma, trés utilisé qui correspond aux coefficients

1
47

3
o= = -, =0.
p=3 gl
Des schémas d’ordre plus élevé peuvent étre construits au prix d’un accroisse-
ment supplémentaire du stencil.

1.2.6. Conditions de bord. Les schémas aux différences finies traditionnels
correspondent au choix @ = 0 et permettent de calculer de maniére explicite
I’approximation de la dérivée premiére de f en un nceud, contrairement aux
schémas compacts qui nécessitent dans tous les cas la résolution d’un systéme
linéaire de la forme Au = BF.

Pour pouvoir résoudre le systéme, il est nécessaire de se donner les valeurs
des variables u; pour ¢ < 0 et ¢ > n. On est dans une situation simple quand
f est une fonction périodique de période b — a, auquel cas

Uiy = Uj Vi € Z.

Dans le cas non périodique, le systéme doit étre complété par des
relations aux noeuds voisins des extrémités de 'intervalle d’approximation.
Par exemple, la dérivée premiére en xg peut étre calculée en utilisant la
relation

1
ug + auj = E(Afl +Bfa+Cf3 +Df4)a
et en imposant
-3 2D —1- 6D
A:$’ B =2+3D, C:++,

afin que le schéma soit au moins précis a 'ordre deux. Dans ce document,
nous essaierons le plus possible d’éviter les problématiques liées aux condi-
tions de bord.

2. RESOLUTION NUMERIQUE
DES EQUATIONS DIFFERENTIELLES ORDINAIRES

2.1. Le probléme de Cauchy. Soit d € N, I désigne un intervalle de R,
to € I, le probléme de Cauchy associé & une EDO du premier ordre s’écrit
de la maniére suivante. Il faut trouver une fonction réelle y € C'(I,R%) telle
que

y'(t) = f(tyt)) sitel
{ y(to) = Yo (10)

ot f: I xR — R? est continue par rapport aux deux variables. Si f ne
dépend pas explicitement de ¢, I’équation différentielle est dite autonome.
Le cas scalaire correspond a d = 1.
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2.1.1. Forme intégrale. En intégrant entre to et ¢, on obtient

t
y(t) —yo= [ f(ry(7))dr. (11)
to
La solution de (10]) est donc nécessairement de classe C! sur I et satisfait
I’équation intégrale (|11)). Inversement, si y est définie par , alors elle est
continue sur I et y(t9) = yo. De plus, en tant que primitive de la fonction
continue f(-,y(-)), on ay € C1(I) et elle satisfait '’équation différentielle :

y'(t) = f(ty(t)).

Ainsi, si f est continue, le probléme de Cauchy est équivalent a
I’équation intégrale . Nous verrons plus loin comment tirer parti de
cette équivalence pour les méthodes numériques.

2.1.2. Euxistence locale et unicité. Rappelons maintenant deux résultats d’existence
et d’unicité pour . On supposera f : I x R* — R? localement lipschitzi-

enne en (tg,yo) par rapport a y, ce qui signifie qu’il existe une boule ouverte

J C I centrée en ty de rayon r;, une boule ouverte X centrée en yy de rayon

ry, et une constante L > 0 telles que :

|f(t,y1) = f(t,y2)| < Llys —yo| YVt € J, Vy1,90 € B

Cette condition est automatiquement vérifiée si la dérivée de f par rapport
a 1y est continue. En effet, dans ce cas, il suffit de prendre

L= max [0,f(t,y)|.
(t,y)ET XX

Lemma 2.1 (Rappel sur I'existence de la solution locale). Soit f : I x R? —
R localement lipschitzienne en (tg,yo) par rapport a y. Alors le probleme
de Cauchy admet une unique solution dans une boule ouverte de centre
to et de rayon roy > 0.

Cette solution est appelée solution locale.

2.1.3. Euxistence globale et unicité.

Lemma 2.2 (Rappel sur I'existence d’une solution globale). Le probléeme de
Cauchy admet une solution globale unique si f est uniformément lipschitzi-
enne par rapport a y, c’est-a-dire si on peut prendre J =1, ¥ = R.

2.1.4. Stabilité sous perturbation. En vue de I'analyse de stabilité du prob-
léme de Cauchy, on considére le probléme suivant :

2(t) = f(t, 2(t)) + 6(t), tel,
{ z(to) = yo + do, (12)

oul 4y € R et ou § est une fonction continue sur I. Le probléme est
déduit de en perturbant la donnée initiale yg par dg et la fonction f par
6. Caractérisons a présent la sensibilité de la solution z par rapport a ces
perturbations. Intuitivement, la stabilité correspond au fait que si TEDO est
perturbée, alors la solution change d’une maniére “continue”.
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Definition 2.3 (Probléme de Cauchy stable). Soit I un ensemble borné.
Le probléme de Cauchy est dit stable sur I si, pour toute perturbation
(60,0(t)) satisfaisant

|60| <e, |5(t)| <e Viel,

avec € > 0 assez petit pour garantir l'existence de la solution du probléme

perturbé , alors
AC >0 tel que |y(t) —z(t)| < Ce Vtel. (13)

La constante C' dépend en général de tg, y et f, mais pas de €.
Quand I n’est pas borné supérieurement, on dit que (10) est asymptotique-
ment stable si, en plus de (13]), on a
ot)) — 0 t)—z(t)] — 0.
SOl = 0 = [y(t) (1)

t—+00

2.1.5. Grinwall. Rappelons le lemme de Gronwall pour le probléme de Cauchy.

Lemma 2.4 (Gronwall). Soit p une fonction positive intégrable sur l'intervalle
lto, to + T'[, et soient g et ¢ deuzx fonctions continues sur [to,to + T, avec g
croissante. Si @ satisfait

o(t) < lt) + / p(r)p(r)dr  VEE [toto+T),

to
alors

oty < g ([ pindr)  Vee foto+1)

0

2.1.6. Utilité du numériqgue. On ne sait intégrer qu’un trés petit nombre
d’EDO non linéaires. De plus, méme quand c’est possible, il n’est pas tou-
jours facile d’exprimer explicitement la solution ; considérer par exemple
I’équation trés simple :
Yyt

bt
dont la solution n’est définie que de maniére implicite par la relation :

Y

1
5 log(t? + ) + arctan (%) =C,

ou C' est une constante dépendant de la condition initiale.

Pour cette raison, nous sommes conduits & considérer des méthodes numériques.
Celles-ci peuvent en effet étre appliquées a n’importe quelle EDO, sous la
seule condition qu’elle admette une unique solution.

2.2. Méthodes numériques a un pas. Abordons & présent 'approximation
numérique du probléme de Cauchy . On fixe 0 < T < +00 et on note
I =Jto,to + T'[ I'intervalle d’intégration. Pour h > 0, soit

tn, = to + nh, n=20,1,2,..., Ny,

une suite de neeuds de I induisant une discrétisation de I en sous-intervalles
In = [tn,tn+1 ]

La longueur h de ces sous-intervalles est appelée pas de discrétisation. Le
nombre Ny, est le plus grand entier tel que

tn, <to+T.
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On a donc hiNp, ~ T.
Soit u; I'approximation au neceud t; de la solution exacte y(t;) =: y;,

Uj ~ yj-
De méme, f; := f(tj,u;). On pose naturellement
Uo = Yo-

Definition 2.5 (Méthode a un pas, méthode multipas). Une méthode numérique
pour lapprozimation du probléme (L0)) est dite a un pas si ¥n > 0, le schéma
définissant uy41 ne dépend que de u,. Autrement, on dit que le schéma est
une méthode multi-pas (ou & pas multiples).

Une méthode multipas est par exemple quand u,41 dépend de u,, et up—_1.
Pour l'instant, nous concentrons notre attention sur les méthodes & un pas.
En voici quelques-unes.

Definition 2.6 (Méthode d’Euler explicite).
Ups1 = Up + hf(tn, up).
Definition 2.7 (Méthode d’Euler implicite).
Upy1 = Un + R f (tng1, Unt1).

Dans les deux cas, ¥’ est approchée par un schéma aux différences finies
(resp. progressif puis rétrograde). Puisque ces deux schémas sont des ap-
proximations au premier ordre par rapport & h de la dérivée premiére de y,
on s’attend a obtenir une approximation d’autant plus précise que le pas du
maillage h est petit.

Definition 2.8 (Méthode du trapéze, ou de Crank—Nicolson).

h
Up+1 = Up + §(f(tnaun) + f(tnt1, Uny1)).

Cette méthode provient de I'approximation de l'intégrale par la for-
mule de quadrature du trapéze.

Definition 2.9 (Méthode de Heun).

st =t 5 (i) + (b, + R F).

Definition 2.10 (Méthode explicite, implicite). Une méthode est dite ex-
plicite si la valeur u,41 peut étre calculée directement a l’aide des valeurs
précédentes (ug)r<n (ou d’une partie d’entre elles). Une méthode est dite
implicite si un+1 n'est défini que par une relation implicite faisant intervenir
la fonction f.

Ainsi, la substitution opérée dans la méthode de Heun a pour effet de
transformer la méthode implicite du trapéze en une méthode explicite. La
méthode d’Euler explicite est explicite, tandis que celle d’Euler implicite
est implicite. Noter que les méthodes implicites nécessitent a chaque pas de
temps la résolution d’un probléme non linéaire (si f dépend non linéairement
de la seconde variable).

Pour les méthodes implicites, il faut & chaque itération résoudre un prob-
léme consistant & trouver le zéro d’une fonction. Pour Euler implicite, afin de
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déterminer u, 1 & partir de u, et t,+1 (auxquels on a accés), il faut résoudre
I’équation

F(z)=0,
ou F(z) := x — up — hf(tp+1,2). On trouve donc le nombre = = wuy41,
comme solution.

2.3. Analyse des méthodes.

2.3.1. Convergence. Comme en Définition la consistance mesure a quel

point le schéma numérique reproduit 1’équation originale quand le pas tend

vers 0. Par ailleurs, la convergence dit quelque chose au niveau de la solution.
On rappelle que le max est une norme

R

Definition 2.11 (Méthode convergente et ordre de convergence). Une méth-
ode est dite convergente si

— <
ngagXN un —yn| < C(h)

ot C(h) h—g 0. On dit que l’ordre de convergence est p > 0 s’il existe ¢ > 0
—

tel que C(h) = ch?.

2.3.2. Gronwall discret.

Lemma 2.12 (Gronwall discret). Soit (kp)nen et (Ap)nen des suites de réels
positifs et (¢n)nen une suite telle que pour tout n € N,

n—1
b < A+ > ko,

s=0

Si (Ay) est croissante pour tout n > 0, alors pour tout n € N,

n—1
On < Ay, €Xp (Z ks) .
s=0

Démonstration. L’idée de la preuve est d’éliminer les termes récurrents de
type ¢s dans la somme, en les remplacant par leur majorant inductif. Nous
allons montrer par récurrence sur n que

n—1
(bn <A, €xp (Z ks) .
s=0

e Initialisation. On a ¢g < Ag, et comme Z;:lo ks = 0, alors

-1
¢0 < AO = Aoeo = Ao exp (Z k‘s> .

s=0
e Hérédité. Supposons le résultat vrai pour tout s < n, c’est-a-dire

s—1
bs < Agexp (Z k) . Vs<n.
=0
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En partant de I'inégalité fondamentale,

n—1

on <A+ kst

s=0

nous remplagons chaque ¢s dans la somme par sa borne inductive :
n—1 s—1 n—1 s—1
<A, + ks Agex k; < A, | 1+ ks ex k; .
S Z s p<z Z> As cr(;ssante " < Z s OXP Z ’
s=0 =0 s=0 i=0
On reconnait maintenant la forme discréte de l'intégrale exponentielle.

Lemma 2.13. Nous voulons montrer que, si ks > 0 pour tout s, alors

1+Zk exp(Zk) exp(Zk) (14)
Démonstration. Pour cela, on introduit les notations Sy := 0,
S ::Zki’ s =0, B, ::1+ZkzseSS, n > 0.

L’inégalité s’écrit donc simplement B, < eSn. Nous allons le prouver
par récurrence sur n.

Pour n =0, 0ona By =1, Sy =0, donc By =1 = ¢%

Supposons que, pour un certain n > 0, on ait B, < e Nous allons
montrer que cela implique Bj41 < eSn+1, Par définition de Bpy1,0n a

Bpy1 = By + kne® < €5 4 kpe® = (14 ky) e < efntdn = S,

Sn

1+z<e®
O
Nous obtenons donc finalement
n—1
dn < Ay exp (Z k) :
s=0
ce qui conclut ’hérédité et prouve le Lemme [2.12 U

Corollary 2.14. Soit (ay,) une suite positive. Si pour tout n € {0, ..., Ny},
ani1 < (14 ch)a, + ChPTL,
alors a, < (ag + CThP) T
Le lemme de Gronwall n’est pas nécessaire dans ce cas mais on va l’utiliser.
Démonstration. On a
Uns1 — an < chay, + ChPTL,

En sommant cette inégalité de n =0 an =m — 1 (avec m > 1 arbitraire),
on obtient

m—1 m—1 m—1
G — G = Z(anH —an) < (Cha -I-C'hp+1 —chZa + ChP™t'm
n=0 s=0 s=0
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On passe ag a droite et en utilisant le lemme de Gronwall discret, on obtient
am < (ao + Chpﬂm) e“mh (ap + CTh?) e

O

2.3.3. Consistance implique convergence. Considérons un schéma du type
Upt1 = @(tn,un, h). (15)

On constate que ces schémas sont explicites. Par exemple, Euler explicite et
la méthode de Heun se mettent sous cette forme, on a

e ®(t,y,h) =y+ hf(t,y) pour Euler explicite
e pour la méthode de Heun,

Bt 1) = y+ o (Fw) + 1 (14 by +hI(E))).

On définit Perreur de troncature locale
Tn+1 = Yn+1 — ® (tna Yn, h) .

Definition 2.15 (Consistance d’un schéma). Une méthode est dite consis-
tante st

max  |m,| — 0.
0<n<Np—1 h—0

Proposition 2.16. Prenons un schéma du type . Supposons que
|®(t,y,h) — ®(t,z,h)| < (1 + Ch)|y — z|.

Si || < ChPTY pour un C > 0 indépendant de h et de n (i.e. si la méthode
est consistante d’ordre p 4+ 1), alors la méthode est convergente d’ordre p,
c’est-a-dire

lun — ynl < ch?
pour un ¢ > 0 indépendant de h et de n.
Démonstration. On considére lerreur e, := u, — y,. On a

Ent+1 = (P(trmuna h) - (I)(tna Yn,s h) — Tn+1,

donc
lens1] < (14 Ch)le,| + CRPTL
On termine en appliquant le Corollaire O

2.3.4. Méthode d’Fuler explicite.

Theorem 2.17 (Ordre de la méthode d’Euler explicite). Supposons que f
est Lipschitzienne en sa seconde variable. La méthode d’Euler explicite est
convergente d’ordre 1, c’est-a-dire que

max  |u, — yn| < Ch.
0<n< Ny,
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Démonstration. On utilise la formule de Taylor sur y(t) autour de t,, via
Taylor-Lagrange

h2
Ynt1 = Y(tn + D) = yn + hy'(tn) + Ey”(ﬁn),

pour un certain 3, €lt,, ty1[. Mais comme ' (t) = f(t,y(t)), cela donne
h?
Yn+1 = Yn + hf(tn, yn) + ?y”(ﬁn)

L’erreur de consistance est
2

h
On+1 = Ynt+1 — o (tn7y7u h) = ?y//(ﬁn)

Sous I’hypothése que y” est bornée sur [0,77], il existe M > 0 tel que
|y"(t)| < M, et ainsi, pour tout n,

M
|Un+1| < 7h2 =: Cth,

et on voit que la méthode est consistante.
De plus, f est L-Lipschitzienne par rapport & sa seconde variable, donc

[@(t,y, h) — @(t, 2, k)| < (1+ Lh) |y — 2.
On termine en appliquant la Proposition [2.16 U
2.3.5. Méthode de Heun.

Theorem 2.18 (Ordre de la méthode de Heun). Supposons que f est Lip-
schitzienne en sa seconde wvariable. La méthode de Heun est convergente
d’ordre 2, c’est-a-dire que

2
max |u, — < Ch”.
0<nEN,, ’ n Z/n|\

Démonstration. On a

’ o " o g g
Y (tn) = f(tn, yn), y'(tn) = 5 (tnsyn) + 9 (tn, yn) f(tn, yn)-
Développons
2

h
Ynt1 = Y(tn + h) = yn + hy'(tn) + =4 (tn) + O(R?)

2
B h* (Of of 3
=Yn + hf(tn,yn) + ) <at(tna Yn) + Fy(tnayn)f(tna yn)) + O(h”).
Développons maintenant
Ftn+hy yn +hf(tn,yn))
0 0
= f(tn,yn) +h 8{(75717 Yn) +h 3?;“717 Yn) f(tn, yn) + O(hz)-

On en déduit
h
(s Ynsh) = Y + 5 (F(tns yn) + F (b + s g+ 0 (b 1)) )

2
= 1) + % (G bt + 5 i)t ) + OGP
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On a donc
On+1 = Ynt+1 — q)(tnvynv h) = O(hg)

Par ailleurs,
h
(I)(t7y>h) - (b(ta'z)h) :y—2+ §(f(tay) - f(t,Z))

b (P Ry + hf(49) ~ T (04 Rz + b (G, 2)))

et
|f @+ hy+hf(ty) = f({E+hz+hf(t2))
SLly+hfty) — (z+hf(t,2)] < L(ly —z[ +h[f({ty) - f(E,2)])
< L(1+ Lh) |y — =|.
Enfin, en supposant que A < 1,
|®(t,y,h) — ®(t,z,h)| < (1+ Lh (14 Lh/2)) |y — 2|
(1+Lh (14 L/2)) |y — z|.

On termine en appliquant la Proposition [2.16] O

NN

2.3.6. Milne-Simpson. Le schéma de Milne-Simpson est défini par

h
Uip1 = Ui—1 + 3 <f(ti717 wi—1) +4f(ts, ui) + f(tiga, Uz’+1)>.

Exercice 2.19. Ecrire lerreur de consistance en utilisant y la solution ex-
acte de y'(t) = f(t,y(t)). Montrer que lerreur de consistance de Milne-
Simpson est d’ordre 4. Quel est l’ordre de convergence ?

2.4. Méthode d’Euler implicite.

Theorem 2.20 (Ordre de la méthode d’Euler implicite). On suppose que
f est L-Lipschitzienne en sa seconde variable. Pour h < 1/L, la méthode
d’Euler implicite est convergente d’ordre 1.

Démonstration. On définit d’abord 'erreur de consistance

On+1 = Yn+1 — (yn + hf(tnt1, yn+1))'

Un développement de Taylor de y autour de ¢, donne
2

h
Yn = Yn+1 — hyl(tn-H) + ?y”(ﬁn-i-l)a

d’ou
h2

Ontl = _?y//(ﬁn-f—l)a lont1] < Ch?.

On introduit 'erreur e, := u, — y,. En soustrayant l'identité vérifiée par
y et le schéma numérique, on obtient :

€ntl = €n + h(f(tn—‘rh Un-i—l) - f(tn-i-la yn+1)) — On+1-
Par hypothése que f est L-Lipschitz,

lent1] < len| + AL leny1| + |onial,
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donc
(1 = hL)lent1] < lenl + |onal-

Pour h assez petit tel que 1 — AL > 0, on obtient

1
len+1] < 757 (lenl + lonsal) < (14 Cih)len| + Ca?,
avec des constantes C,Co indépendantes de h. On termine en appliquant
le Corollaire 2.14 O

Proposition 2.21 (Ordre de la méthode de Crank—Nicolson). Supposons
que f € C?. La méthode de Crank-Nicolson est convergente d’ordre 2.

Démonstration. ¢ On commence par prouver la consistance. On définit
I’erreur de consistance

g(f(tn, Yn) + f(tny1, yn+1))>’

et on veut connaitre son comportement quand h est petit.
On part de la formulation intégrale de 'EDO,

tnt1
Yn+1 = Yn +/t f(s,y(s)) ds.

La formule du trapéze appliquée a 'intégrale donne en fait ’erreur de con-
sistance

On41 ‘= Ynt+1 — <yn +

tn+1 h
[ £u@) ds = 5 (£(nm) + (b)) + i,
tn

et on veut connaitre 'ordre de g,41 en h. On pose
g(s) = f(s,(s)).

On a g € C? sur 'intervalle considéré. On rappelle que t, 41 =t, + h. On a

tn+1 h
mnir = [ gls)ds = 5 (altn) + gltne). (16)
tn
Pour tout s € [t,, tp+1], il existe By € [tn, tnt1] tel que
(s = tn)?

9(s) = g(tn) + (s = tn)g'(t) + ——5——9"(Bs).

On intégre de t, a t,11, en posant v = s — t,,, on obtient
2

/t:n+1 g(s)ds = /Oh [g(tn) +vg (t,) + I;g”(ﬁthrl,)] dv

h? 1,
—hglta) + g t) + 5 [ G (Brn)
0
On applique Taylor-Lagrange en t,, il existe 1, € [t,, tn+1] tel que
2

ltnsr) = gltn) + g (1) + 56" (1),

et alors
2 h3

2 000+ 9(tn1)) = hgltn) + g (1) + 6" 1)
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En reformant on a

1 3

h
h
T =g | 7 o) = T )

Or, g" est bornée sur [0, 7], donc |¢”(s)| < M pour tout s € [0,T]. Alors

Ly, 1 b MhR3

= Hdr| < =M dr = ,
’2/079(5tn+)7 5 /OTT 5

et M est indépendant de T' et de n. On en déduit qu’il existe une constante

Cr > 0, indépendante de h et de n, telle que
‘Tn_t,_l‘ g Ch3

e Prouvons maintenant la convergence. On introduit Uerreur e, := u, —
Yn. En soustrayant l'identité vérifiée par y et le schéma numérique, on obtient

h
éntl = €n + §(f(tm Un) — f(tn, yn) + f(tns1, Uns1) — f(tn+layn+1)) — Tn+1-

Par hypothése que f est L-Lipschitz,
h h
ensal < leal (14 52) + 5 lensal + [t
et

h h
<1 — 2L> ’€n+1| < \en] <1 + 2L> + ’Tn+1’.
Pour h < 2/L, on a

1+24L 5
len+1] < |€n\ﬁ + |Tnt1| < len| (1 4+ C1h) + CR®,
T2
on termine en utilisant Gronwall discret de la méme maniére que pour la
méthode d’Euler implicite. O

2.5. Stabilité.

2.5.1. Définition. Les erreurs viennent de plusieurs sources

e erreur d’arrondi données par la précision machine, qui n’est pas
strictement nulle

e erreur sur la donnée initiale

e erreurs de troncature du fait du pas fini

Un schéma numérique est stable si ces pertubations ne produisent pas une
divergence de la solution numérique a temps long.

Definition 2.22 (Stabilité). Une méthode numérique est dite absolument
stable si, a pas h fizé,

lun| — 0. (17)
Une méthode numérique est dite stable si pour tout T > 0 il existe Cp tel
que pour tout n € {0,..., Ny},

|un| < Cr lug (18)
ot Cp est indépendant de n et de ug.

Dans (17)), on remarque que t, — +00 est équivalent a n — +00.
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2.5.2. Stabilité pour y' = Ay. On va appliquer cette notion au probléme de
Cauchy

11y
(oo 9
ot A € C. On sait que la solution exacte est y(t) = e et que y(t) ol 0
si et seulement si Re A < 0. Et dans ce cas, le probléme est stable au sens
de la Définition 2.3
Proposition 2.23. On considére le cas ou A€ C, et h>0. On a que

e Fuler explicite est absolument stable si et seulement st

Re\ <0, et h < —2|1§|62)\. (20)
o Fuler implicite est absolument stable si et seulement si
Re X < 0.
e [a méthode du trapéze est absolument stable si et seulement si

Re A < 0.

e pour A € R, la méthode de Heun est absolument stable si et seulement

St

2
A<0 h < ——.
<0, < \

Pour A € R, les régions de stabilité d’FKuler explicite et de Heun sont les
mémes. On voit qu’il semble falloir ajouter des conditions pour la stabilité
des schémas explicites, alors qu’il y a besoin de moins de conditions pour la
stabilité des schémas implicites.

Démonstration. Le schéma d’Euler explicite s’écrit
Upt1 = Up + hAup = (14 hA) up,.
La solution numérique est donc
Uup = (1 4+ hA)"ug,

On définit z := hA, le facteur d’amplification est R(z) = 1+ z. La condition
de stabilité est donc |R(z)| < 1. Or, en passant au carré, on calcule

|R(2)| =1+ 2hRe A+ h?|\]?
et on voit que la condition est équivalente &

h(h|)\|2+2Re)\) <0,

ce qui est équivalent a (20)).

Pour le schéma implicite
1
= hA donc =
Up+1 = Up + NDAUR41, n Un+1 1— X Un,

et la solution numérique est
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Le facteur d’amplification est R(z) = flz, la condition de stabilité s’écrit

|R(z)| < 1. Comme précédemment, on calcule que |R(hA)| < 1 si et seule-

ment si h > 2‘1;%)‘. La méthode d’Euler implicite est ainsi absolument stable

pour tout A > 0 dés que Re A < 0.
Pour la méthode du trapéze,

h hA
Up+1 = Up + §(f(tna Un) + f(tn+17un+1)) = uUp + 7(“n + Un+1)-

On obtient ainsi

Ah Ah 1+ 40
1- 7 Ups1 = |1+ 7 Un, Un+1 = N, Une

14+ 2\"
Up = N uQ.
1=

Le facteur d’amplification est

2
et

et on calcule que |R(Ah)| < 1 si et seulement si Re A < 0.
Pour la méthode de Heun,

h 2 h2)\2

- (1 + h\ + %(h)\)Q)un.
La solution numérique peut donc s’écrire
U = R(hX)"ug.

ou le facteur d’amplification est R(z) = 1+ z + % Dans le cas ou A € R,
on a que |[R(Ah)| < 1 si et seulement si

—1<1+h\+ <1

(hX)?
2
ce qui est équivalent &
—4 < h®X2 42k <0,
il faut résoudre deux inégalités quadratiques. L’inégalité de droite est vérifiée

si et seulement si h < —% et 'inégalité de gauche est toujours vérifice. [

2.6. Méthode de Runge-Kutta. Le but est d’introduire une classe de
méthodes plus précises que les méthodes d’Euler explicite et implicite, & un
ordre plus élevé.

Le principe est alors de construire des valeurs approchées u; au temps t,
pour chaque 0 < n < Nj, suivant le schéma a un pas

uo = Yo, et Up+1 = @(tTu Unp,y h>7
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dans lequel la fonction ® caractérise la méthode considérée. Pour la méthode
d’Euler explicite, cette fonction est donnée par ®(t,y,h) =y + hf(t,y). La
méthode de Runge-Kutta d’ordre deux est définie par

Oty h) =y+hf(t+2y+5f(y.1),

tandis que la méthode de Runge-Kutta d’ordre quatre est donnée par

h
(I)(taya h) = g(nl +2ny + 2”3 + TL4),

ou

| |
~

(5, 1),

= f(t+ 5.y + §n),
(t+ R 2”2)

n4—f(t+h,y+hn3).

Plus généralement, une méthode de Runge-Kutta d’ordre s est donnée par

les formules
O(t,y,h) =h Z bin;,
ou

ni = f(t,y),
ny = f(t + c2h,y + hazin),
ng = f(t + c3h,y + h(azini + azng)),

“ey

ns = f(t + Csha Y+ h(aslnl + agomo + ...+ as,sflnsfl))-

Les coeflicients (a;;)1<j<i<s, (¢i)2<i<s, €t (b;)1<i<s sont souvent représentés
par un tableau dit de Butcher
0
c2 | az1
C3 | 31 (32

Cs | s1 Qg2 -+ (Ogs—1
bl b2 e bs—l bs
Par exemple, le tableau de Butcher des méthodes d’ordre 2 est
0
1|1
212
0 1
et celui d’ordre 4 est
0
111
T2 1
210 2
110 0 1
‘ I 1T 11
6 3 3 ©
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De plus, la méthode de Heun est une méthode de Runge-Kutta avec
tableau

3. APPROXIMATION NUMERIQUE
D’EQUATIONS AUX DERIVEES PARTIELLES

3.1. Schéma 0 pour I’équation de la chaleur.

3.1.1. Présentation. On étudie ’équation de la chaleur unidimensionnelle
sur Ry x [0,1]. Elle s’écrit, pour un paramétre v > 0 appelé coefficient de
diffusion,

oy 0%y _ . _ _
E - V@ - 07 y(7 0) - y(7 1) - 07 y(O,x) VQJG_[O,I] y0($) (21)

On suppose connue 'existence de la solution classique et on peut montrer
qu’elle est C*°. Notre but est d’approcher numériquement la solution avec
un schéma aux différences finies appelé 0-schéma.

On se donne une discrétisation en temps
t, =nAt, neN

et en espace
1
VEST
On note y la solution exacte de , on définit yj = Y(tn,;), et on note

xj = jAx, jed{0,...,J+1}, Ax

ul = y(tn, v5)
une approximation de y7. On aura donc les conditions de bord
ug = uyyy = 0.

On note u” := (u})1gj<s € R’ le vecteur contenant toute I’approximation
pour un temps donné.

3.1.2. Définition du 6-schéma. Pour 6 € [0,1], on définit
n+1 n+1 n+1 n+1
A LR SN
At (Ax)?

On voit que

n _ n n
u uiyy —2uy +ui

(Az)?

(22)

e le cas 8 = 0 est un schéma explicite, & partir de u" on peut calculer
un+1’

e les cas 6 €]0, 1] sont des schémas implicites,

e le cas 8 = 1 correspond a Euler implicite,

e le cas 0 = % est le cas Crank-Nicolson pour la discrétisation tem-

porelle.

Definition 3.1 (Stencil). Le stencil pour (n,j) est Uensemble des (m,k)

qu’il faut connaitre pour powvoir calculer uf.
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On rappelle la définition de la norme euclidienne ¢ dans R”,

n

2
> vl
i=1

Theorem 3.2. Soit T > 0, on considére l’équation différentielle sur t €
[0,T] et n € {0,...,N} o NAt < T < (N + 1)At. Pour la norme 2, le
0-schéma est convergent

[Vl 2 ==

e s5if > %,
o 510 < % sous la condition CFL
2UAL
1-20)—— < 1. 23
(1-20) s (23

Il est d’ordre 2 en espace. Il est d’ordre 1 en temps si 0 # %, et d’ordre 2 en
temps si 0 = % Plus précisément, sous la condition CFL, on a

0o ) At si0# 3L
Jmax [u* = 9™,z < Cr(Az) +CT{ (AL i ; (24)

ot Cp ne dépend pas de n ni de At ni de Ax, mais dépend de T'. De plus,
il est stable au sens ou pour tout n < N,

|[u™]pe < Kr HUOH@ )
ot K1 ne dépend pas de n ni de At ni de Az ni de u°, mais dépend de T.

3.1.3. Le schéma est bien défini. Définissons

A= GRJXJ, 5::

Pour tout n,j, on a (Au"); = ul; — 2uj +u} ;. Le schéma se réécrit
(I +60B8A)u" = (I —(1—-0)BA)u"

Le schéma est bien défini si I+608A est inversible, car alors ! est calculable
par

Wt = (T +08A) (I — (1 —0)8A)u™.
Montrons que I + 83 A est inversible.
Lemma 3.3. Pourpe€ {1,...,J}, le vecteur
P.— (gin (22T
Vii= (sm <J+1))1<j<J

est vecteur propre de A pour la valeur propre

Ap =4 (sin (%))2 (25)
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Démonstration. Par définition de A,
(AVP); =2(VP); = (VP)jm1 = (VP)j1
= 251n(§T1) — sin(%) — sin(%).
On utilise que pour tout x € R,

sin((j 4+ 1)x) +sin((j — 1)z) = 2sin(jz) cos(z).

En prenant z = J +1, on obtient
(AVP); = 2(1 COS(J_:_T1>> sm(%ﬂ) = A\p(VP);
2
ol )\p:2(1 cos(JH)),carl—cosx:2(sin(%>) . O

Ainsi, en notant o(B) le spectre de B pour toute matrice B, on a
mino (I +0A) =1+ 65 mino (A)
2
—1+Mﬁ@m<GHD» >1>0,

donc la matrice est inversible et le schéma bien défini.

3.1.4. Consistance du schéma. On remarque d’abord que

n+1
Y o~

y; oy At 9%y
At T ot

(tnr27) + S 8 (b ) + O((AD)?)

Puis

Yio =20yl Vi Y (y? - y?—l)

(Az)? - (Az)?
1 [0y Az 0%y Az)? 93y
= 55 (Gt + 5 G ) + S T )+ 0((80)") )
1 [0y Az 0%y Az)? 93y
Ax(@ (tny25) + = 82(%41) ( m)za3am ﬂ-%o«Ax)j>
%y
= 55 (tn,7j) + O((A2)?).
De méme,
n+1 n+1 n+1
Yir1 — 2y 1y, 0?
Py = el ) +0((A0)?)
18y

(w1 3) + O((B2)?)

2
(g? (tn ;) + Atgtg (tn, :cj)> L O((AT)? + (At)?)
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On note y" := (y]n)lgjg J- En remplacant tous ces termes dans le schéma,
on obtient I'erreur de consistance en (t,, ;).

1

of i= 25 (1 +0BA) Y™ — (I = (1= 0)BA)y"),
'r.H—l _an n+1 ) n+1 n+1 n Y n
Y = Yi <V9y3+1 (i@ Y- V(1 — )t (Alg; %1)
) At 9%y ) 82
= Y1y, 25) + Qt (b 23) = 0L (b, 27) = O (10,25)
2
(1l - e)g Y (tnyx5) + O((A2)? + (A1)?)
2 2
—(1-6) @?;— g 2) (tny ;) + At (3 = 6) g Yty ;) + O((A2)? + (A)?)
2
= (- 0) Dt 2) + O((A0)? + (A1),
On a
n O(At) sif 75
7 |_O((A$)2)+{ O((A0?) 501
et donc
n| _ O(At) sif# 4
g ol =0(a0®) +{ 000, 3073 (2)

donc le schéma est consistant, d’ordre donné par (26]).

3.1.5. Stabilité du schéma. On rappelle que pour toute matrice M sym-
métrique et tout vecteur v, on a

[Mv]pz < Jollpe max{|A] [ A € o(M)}.
On définit
B:=(I+08A) " (I—(1-0)84A), on a u"tt = Bu™.

Comme A est symétrique, pour toute fonction f lisseenles Ay, p € {1,...,J},
les valeurs propres de f(A) sont les f(),). En se rappelant la définition
de Ay, on a que les J valeurs propres de B sont, pour j € {1,...,J},

1-(1-0)8),

Hp 2= W’ K= 1211?3] |kp| -

Comme 0 > 0, alors 14+ 608X, > 1 > 0. La méthode est stable dans la norme
euclidienne ¢? si et seulement si

Vp € {17- ) ']}7 |,LLp| <L (27>

On rappelle la définition de la norme d’opérateur pour £2, pour toute matrice
M,

M
”M”p_Mz ‘= sup ” v”p .
veERIH1 |v] g2
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Elle respecte, pour toutes matrices M et P, [M P22 < |[M|p2_p2 [Pl pe-
On a toujours u™ = B™u® et donc dans ce cas,

[u"le < [B" e 0] < 1Bl [

ce qui est équivalent

—02 )

donc |u™|,2 reste borné si et seulement si |B2
a . Or, équivaut a
(1+68%)" = (1= (1= 0)8%)" >0,

—025

On calcule donc
(1+083) — (1= (1= 0)8A,)" = BAp (2 — (1 - 26) B,) .
Comme A, > 0, la stabilité équivaut & 2 > (1 — 260) BA,,.
Sif> %, alors I'inégalité est toujours vérifiée. Si 0 < %, alors 1 —26 > 0
et la condition devient
A T
B <12 20
On a que

Jm
— Aain?
1I£z?<XJ>\p = 4sin (2(J+ 1)> < 4.
Ainsi, si on a la condition CFL
2
48 < ——,
s 1-—20

alors

A 2 2
< 2P )
Frp < 4 1—29<1—29

3.1.6. Convergence du schéma. On utilisera pour ¢a le théoréme [3.4]

3.2. Théoréme de Lax. Le théoréme de Lax montre que
e stabilité (le schéma ne crée pas d’oscillations rapides)
e ct consistance (au niveau de I'EDP discréte, I'erreur entre ’application
du schéma a u™ et y™ tend vers 0)

implique convergence.

Theorem 3.4 (Lax : stabilité + consistance = convergence). Soit y la
solution suffisamment réguliere de I’équation de la chaleur . Soit uy la
solution numérique discréte obtenue par un schéma de différences finies avec
la donnée initiale u(; = yo(x;). On prend la norme euclidienne |-|,2. On
suppose que le schéma est

e [inéaire & deux niveaux
e consistant d’ordre p en espace et a lordre q en temps pour |-|,2, o
Uerreur de consistance est
1

o = Kt (yn-‘,-l _ Byn)

e stable pour |-|,.

On définit e™ := uy —yi. Alors pour tout temps T > 0 il existe une constante
Cr > 0 indépendante de Ax et At telle que

max_ |e"|,2 < Cr((Az)? + (At)?). (28)

0<tn<T
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On remarque que I'estimation est indépendante du nombre de points
de discrétisation J.

Démonstration. Un schéma linéaire & deux niveaux peut s’écrire sous la
forme condensée c’est-a-dire

u™tt = By
ol B est la matrice d’itération (carrée de taille J). On note y" = (y;)1<j<s

avec yr = Y(tn,xj). Par hypothése sur la consistance, il existe un vecteur
o™ tel que

y" T = By" + At o™
avec
lo"l> < C((Az)? + (At)7).
On obtient
"t = Be" — Ato",
d’ou, par récurrence,
e" = B"e? — At i B kgk=1,
k=1
Or, la stabilité du schéma veut dire que
["le2 = |B"" o < K [[°]] o

pour toute donnée initiale, c’est-a-dire que |B"|s.2_, 2 < K ou la constante
K ne dépend pas de n. D’autre part, e = 0, donc la relation précédente
donne

n
le"e < AtY | B
k=1

. a'HHﬁ < Atn KC((Az)P + (A1)7),

ce qui fournit I'inégalité voulue avec la constante Cp = TKC' (puisque nAt <

T). O

Le Théoréme de Lax est valable pour toute EDP, pas seulement pour
I’équation de la chaleur. Il admet une réciproque au sens oil un schéma
linéaire consistant & deux niveaux qui converge est nécessairement stable,
mais nous ne préciserons pas ce sujet.

3.3. Le cas multidimensionnel. Nous donnons ici simplement un apergu
des méthodes multidimensionnelles, sans rentrer dans les détails. Nous pou-
vons facilement adapter le cas unidimensionel en espace au cas multidimen-
sionel en espace. Considérons Q = (0,1) x (0, L) avec des conditions aux
limites de Dirichlet pour le probléme exact suivant
y 0%y 0%y B
ot Vo2 Vo2 T
y(t:(),x,y) :yO(xvy)v (xay) 697
y(t,z,y) =0, teRY, (z,y) € 09.

07 (l"y7t)€QXR*7
(29)
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On introduit deux discrétisations en espace Az = 1/(N, + 1) > 0 et
Ay = L/(Ny+1) > 0, ou N, N, € N. Le pas de temps sera At, et les
coordonnées sont donc, pour n >0, 0 <j < Ny +1, 0 <k < Ny +1,

(tn, zj, y) = (nAt, jAz, kAy). (30)

On note y la solution exacte de ([29)), et u;”k les valeurs d’une solution
approchée. Les conditions aux limites de Dirichlet se traduisent, pour n > 0,
en

n n _ n o __ n — -
U07k == uNzc“!‘l,k = 0, \V/k, 'U/j70 = uj,Ny+1 = O7 VJ (31)

La donnée initiale est discrétisée en u(;’ e =Yo(xj,uk) Vi, k.
La généralisation au cas bidimensionnel du schéma explicite est évidente

n+1 n n n n
T R SV 2ugy — Uy g

—ulp g F2ul — Ui 0
At (Az)? ’

v (Ay)?

(32)

pour n > 0, j € {1,...,N,} et k € {1,...,N,}. La seule différence no-
table avec le cas unidimensionnel est le caractére deux fois plus sévére de la
condition CFL.

3.4. Exercices.

3.4.1. Advection. On considére I’équation d’advection linéaire & vitesse con-
stante

Oy +adyy =0, a €R,

et le schéma explicite centré associé

1 __aAt
ué” =u; — )\(u?H — u?_l), A= AL
On définit 'erreur de consistance
1
ol — yi =yt +ay,?+1 — Y
v At 2Ax

Montrer que le schéma est consistant d’ordre 1 en temps et 2 en espace (on
ne demande pas ceci au niveau de la convergence de la solution mais au
niveau de la consistance).

3.4.2. Schéma de Gear. On considére ’équation de la chaleur et le

schéma de Gear
Bup ™t — du + Tt —uy 20—l
2At (Ax)? '

Montrer qu’il est d’ordre 2 en espace et en temps.

4. METHODE DES VOLUMES FINIS

La méthode des volumes finis est utilisée quand il existe une quantité
conservée et lorsqu’on veut que cette propriété soit exactement respectée
par le schéma numérique. On montrera un tel schéma sur ’exemple suivant.
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4.1. Equation de transport non linéaire. Soit yy € C*°(R,R) & support
compact, c’est-a-dire que

dr >0, Vo €] — oo, —r| U [r,+oo[, yo(z)=0.

Soit f : R — R une fonction de flux (au moins C'). On considére I'équation
de transport linéaire & vitesse constante

Oy(t,z) + 0z (f (y(t,x))) =0, reR, t>0
y(x,0) = yo(x).

Quand pour tout x € R, f(x) = ax, ot a € R, on a ’équation de transport
linéaire et la solution exacte est y(t,x) = yo(at — x).

(33)

4.2. Forme intégrale et quantité conservée. Dans 1’équation exacte (33)),
la quantité conservée est la masse totale

M(t) := / y(t,z)dz € R.
R
Lemma 4.1 (Conservation de la masse pour la solution exacte). Pour tout
t >0, M(t)=M(0).

Démonstration. Soit x1,x2 € R tels que 1 < 2. En intégrant I’équation (33)
sur [x1,x2], on a

)

% y(t,z)dx = /902 Oy(t,z)de = — /QE2 O f(y(t,x))dx

Or, comme g est a support compact, y(t, -) est & support compact pour tout
t € Ry. Donc y(t,z) — 0 quand x — +oo. Faire 1 — —o0 et z2 — 400
donne que %M(t) = f(0) — f(0) =0. O

4.3. Maillage, volumes de contréle et moyennes de cellule. On in-
troduit un maillage (éventuellement non uniforme) donné par des interfaces
"'<I‘i7% <l‘i+% <:L‘l-+% < e,

et les cellules (volumes de controle)

I =[x ,J:H%], Aa:i:aswéf:cif )

[NIES

71—

On définit la moyenne sur chaque cellule, qui sera 'inconnue de la méthode

w(t)i= 5 [ vit.)da, (34)

et quand tous les Az; sont petits, on a bien sir y;(t) ~ y(¢, ;). On remarque
aussi que

M(t) =) yi(t)Az;. (35)

1€EZ
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4.4. Schéma de volumes finis : origine du schéma. En intégrant
sur [;, on obtient

% . y(t,z)de + f(y(xH%,t)) — f(y(:nz_%,t)) =0,
et donc
%yi(t) = —Alxi<f(y(xi+;,t)) — f(y(:ni_%,t))).

La quantité y;(t) représente la quantité de masse dans le domaine [;. Sa
dérivée représente la variation de masse, et elle est donnée par le flux, qui
est la somme entre la masse entrante par la gauche de I;, A%tlf(y(a:%%,t))

et la masse entrante par la droite < f(y(z; L 1,t)). L'idée des volumes finis
i 2

est d’approximer les flux exacts aux interfaces par un flur numérique.
On introduit un flux numérique

F:RxR R,

qui approxime le flux a l'interface lorsque la solution est approximée par des
valeurs constantes a gauche et & droite.
Par exemple le flux numérique de Lax—Friedrichs est défini par

Flug,un) = 3 (f(ur) + f(u) = 5 (up — ur), (36)

ot a > 0 est tel que o > maxyey | f'(u)], et U est un intervalle contenant les
valeurs de la solution.

4.5. Schéma discret d’Euler. Pour At > 0, on note «}' une approximation
de y;(nAt), donc

up ~ yi(nAt) ~ y'
et on pose
F;_l‘_% = F(u;nvu?-l-l)

Le schéma d’Euler explicite est

untl =yt ﬂ(Fﬂ  —F" ) (37)

v ! Az; \ itz %
Le schéma d’Euler implicite est
At
n+l _ n n+1l _ n+l
Ui T Ax; (F“F% F’—% )

Nous allons faire ’analyse d’Euler explicite.

4.6. Conservation discréte. Définissons la version discréte de la masse

n.__ n
m .—E uy Ax;.

€L
Comme u]' ~ y;(nAt), et par , on a
m' ~ M(nAt).

Le schéma a été choisi de maniére a ce que cette masse approximée soit
conservée.
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Proposition 4.2 (Conservation de la masse dans le schéma discret). Le
schéma de volumes finis est conservatif au sens ot pour tout n € N,
m™ =m° = M(0).

Démonstration. Soit J € N. En multipliant le schéma par Ax; et en som-
mant sur ¢, on obtient

Z U?HA%-: Z u Ax; — At Z (FZ_LF%*FZZ_%)

_J<i<J _J<i<J _J<i<J
_ n . n n
= Y Azt A (F_J_% - FH%) . (38)
—J<i<J
Or, F}l; = F(u},u’, ) mais comme yo est a support compact, on a que
2

quel que soit s € N, uf — 0 quand i — £oo. Ainsi, F;L+l — F(0,0) quand
2
J — +00. On a de méme F", , — F(0,0) quand J — 4oo. En faisant

2
J — +oo dans , on obtient

mt = mn.

Par ailleurs m" = M(0) car initialement u{ = [, yo pour tout i € Z. O

4.7. Consistance. Nous le faisons sur un maillage uniforme Az; = Ax car
le cas non uniforme est similaire.
On définit les valeurs exactes échantillonnées

yit = y(tn, i), r; = 1Az, t, = nAt.
Nous définissons l'erreur de troncature locale
+1 n
yn -y 1
of = # t AL (F(yiyfa) — F(yi,u8))

On suppose que f € C%(R), le flux numérique F : R? — R est consistant
avec f, c’est-a-dire que

F(v,v) = f(v), Vv e R. (39)
On peut vérifier que le flux respecte cette propriété.

Proposition 4.3 (Consistance). Supposons , et F' est C' au voisinage
de la diagonale {(v,v),v € R}. Soit y € C*(R x [0,T]) une solution réguliére
de léquation exacte (33)). Alors pour le schéma FEuler explicite , on a
que pour tout T > 0, il existe Cp > 0, indépendant de At, de Ax, dei et de
n < N, tel que

0" < Cp(At + Ax).

Démonstration. On a

At?
ygﬁ'l =y + At (Ow); + N <8tzy>? + O(At3)'

Donc

n+l _ ,n

[ yi n At n
AL (Ory)i + 7(@2@/)1‘ + O(A?).
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De méme,

Wi =i+ Ax @) + B 027 + 0(aa?)

Ax)?
Wy = o — A )} + S @27 + 08,

En particulier,
Ui~y = Az (0uy)7 + O((A2)?), wi' —yity = Az (0ey)} + O((Ax)(2)-
40)

Développons le flux numérique au voisinage de la diagonale. Comme F est
C* et que (y?, yit1) et (yi1, ;') sont proches de (y;, %), et en utilisant la
consistance F(y!',y") = f(y!'), on peut écrire des développements de Taylor
a l'ordre 1

F(y?,yl) = Fyl, ) + 0 F R, ) (Yl — v + O (vl — vi)?),
= f!) + RF Wl ul) (v — ui') + O((Az)?)
" = O(Ax). De méme,

(2

Fyf 1, yf) = F(yl,y) + 0 F (v ) (v g — y) + O((yiy — yM)?)
= fy") + O F (v (yiy — y") + O((Az)?),

olt on a utilisé que y', | —y

Ainsi
F(yzn7yzn+1) - F(yznflu y?)

= L F (Y yl") (yiy — y) — L E (Y yl) (yiy — yi) + O((Ax)?)

& ATOFE YD) + RF ) G:)F +O((A)°).

Puisque F est C! et vérifie F(y,y) = f(y), alors

fy) = (fyF(y, y) = OF(y,y) + uF(y,y)

et donc
1

Az
On a obtenu
o7 = Q)i + 0(a0)) + (') Q)i + O(A2)).
Or, comme y est solution exacte réguliére, on a
(Ow)i + (0 f () (tn, i) = 0.
Mais (0rf () (tn, i) = f'(y) (Ory)7', donc
Q)i + f'(yi") (Oay)i’ = 0.

(Pt vt = Pty ul) = £/ @)} + O(Aa).
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4.8. Stabilité. On pose
At
A= —.
Az
Dans le cas général (flux non linéaire), une notion de stabilité utile en

volumes finis est souvent la stabilité > (principe du maximum).
On suppose que le flux numérique F' vérifie :

O F(u,v) >0, O F(u,v) <0 (a1)
AL > 0Vu,v € R, j € {1,2},]0;F(u,v)| < L.
Par exemple le flux vérifie ces propriétés.

Proposition 4.4 (Stabilité, principe du maximum discret). Nous supposons , ,
que F est Ct, et la condition CFL

2\L < 1. (42)
Alors pour tout n € N,

a1 P

On en déduit facilement la relation de stabilité [u"|p. < [uf|| 4 oUr
tout n € N.

Démonstration. On fixe n et 7. On considére la fonction
(o, 8,7) == 8= A(F(8,7) = Fla, 8)),

le schéma se réécrit

u;'H-l = é(u?—lv u?> u?—&—l)'
e Prouvons que @ est croissante en chacun de ses arguments. On calcule
0P 0P
— = \OF >0, - = —ARF(B,7) 20,
= A0 F(0,) 5 = —A0aF(8.7)
0P
a5 =1 MR (B.7) ~ 2aF (. ).

Avec ,

Cela donne
0P
— >1-2)\L > 0.
B “2)
e Soient
a” := minu”, b" := maxu’.
jez I jez 7

Alors pour tout 7 € Z et pour tout n € N,

n

n n
a’ S Uiq, Uy,

n n
Uiy SO
Comme & est croissante en chacun de ses arguments,

(I)(an’an7an) < q)(u?—lvu??u?—l—l) < (I)(bnvbnabn)
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Mais, par (39)), on a ®(c,c,c) = ¢, donc
a" < u?“ <™.
On en déduit la conclusion. O

4.9. Convergence. On se place dans le cas du transport linéaire

f(z) =ax

avec a € R constant.
On suppose une nouvelle condition CFL

la|A < 1. (43)
On note y(+,t) la solution exacte, donnée explicitement par
y(z,t) = yo(x — at).
On se restreint également au flux numérique de Lax-Friedrichs , avec
a = |a|, donc
a+ |a a — |al

F(up,up) = 5 ULt 5 urR=a (Sa>0urL + dacoUR) -

On peut prouver la convergence d’ordre 1 en £°° en temps fini. On rappelle
que

[u"goe = sup [ug’|.
€L

Theorem 4.5 (Convergence). Soit T' > 0 fixé. On fait les hypothéses des
Proposition et et on suppose la condition CFL . Alors il existe
une constante Cp > 0 telle que, pour tout n tel que t,, < T,

|u" =y e < Cr (At + Ax).
Cr est indépendante de n, de At et de Ax.

Démonstration. On a stabilité et consistance du schéma par les résultats
précédents. On définit v := a\. Pour a > 0, on a F(ur,ur) = auy, et le
schéma s’écrit
't = (1 —v)ul +vul .
Pour a < 0, on a F(ur,ur) = aur et le schéma s’écrit
up ™ = (1= ]) uf + [ ufys.
On donne seulement la preuve pour a > 0 puisque le cas a < 0 est identique
en échangeant i —1 et i+ 1. On définit I'erreur e} := u]’ —y;*. La consistance
se réécrit
gt = (=)l + vyl + Atol,
ou o' est bornée uniformément par |o'| < C(At + Az), pour t, < T, grace
a la Proposition (4.3)). On obtient I’équation de propagation de I’erreur

ettt =1 —v)el +vel, — Atol.

Par la condition CFL , onal<v<1,donc

i < (1= v)lef| + vlef | + At[of].
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En prenant le supremum sur ¢, on obtient
" oo < (A=) €™l + Ve [goe + AL 0" oo = " [goe + AL 0" g -

On pourrait maintenant utiliser le lemme de Gronwall discret, mais on peut
aussi directement itérer . On rappelle que N est tel que ty < T < ty41. On
obtient

0<k<N

n—1 n—1
le" g < HGOHZOO + Atkzo HJkHZw = Atkzo Hngéoo < nAt max Haksz

< T max HJkH < CT(At + Ax).
thn<T  O0<ESN £>° Prop

4.10. Exercices.

4.10.1. Schéma conservant I’énergie. On considére I’équation d’advection ([33))
avec f(y) = ay, a > 0. On suppose que la donnée initiale yg est lisse et a
support compact. On définit ’énergie

E(t) := ;/Ry(t,x)Q dx.

Montrer que cette quantité est conservée, c’est-a-dire que E(t) ne dépend
pas de t.
On note les moyennes de cellule y;(¢) comme en (34). On définit
n+1/2 u?—i_l + uy’

(2 ° 2 Y

on choisit un pas spatial Az > 0 et on écrit un schéma de volumes finis

1 n+1/2 n+1/2

“zm —u Ta Wity — Wiy 0

At 2Ax '

On définit ’énergie discréte
Al’ 2
€L

Montrer que le schéma donné conserve 1’énergie discréte.

5. METHODE VARIATIONNELLE

5.1. Le probléme de Dirichlet.

5.1.1. Formulation classique. Soit Q un ouvert borné de R% d > 1. On
considére le probléme
—Au = f, dans €,
(44)
uw =0, sur 0f,
oit f € C(Q) et Au = d?u+ 03u, ot 'on désigne par §?u la dérivée partielle
d’ordre 2 par rapport a la i-éme variable.

Definition 5.1. On appelle solution classique de une fonction u €
C2(Q) qui vérifie ([44)).
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5.1.2. Formulation faible. On rappelle que espace H}(Q) est défini comme
ladhérence de C°(Q2) dans

HY(Q) = {u € L*(Q); Duec L*(Q)},

ot Du désigne la dérivée faible de u. Par exemple |-| en dimension 1 a une
dérivée faible mais n’est pas dérivable en 0. Les conctions discontinues en
dimension 1 n’ont pas de dérivée faible, les dérivées distributionnelles sont
des Dirac aux points de discontinuité. On rappelle que 1’espace H'(2) muni
du produit scalaire

d
(u,v) g1 ::/uv—l—Z/DiuDiv (45)
Q P )

est un espace de Hilbert. Les espaces H'(Q) et Hg(Q) font partie des espaces
dits “de Sobolev”.

L’introduction de solutions plus générales permet de s’affranchir de la
régularité C?, on les appellera “solutions faibles”.

Definition 5.2 (Formulation faible). Soit f € L?(2), on dit que u est solu-
tion faible de (44) si u est solution de

u € Hy(9),

d
Z/DWD@'SO Z/f% Vi € Hy(S).
=179 @

5.1.3. Formulation variationnelle. On définit

J(v) ::;/QVU-VU—/QJ”U.

d
/Vu-VgozZ/DiuDigo.
Q — Ja

Definition 5.3 (Formulation variationnelle). Soit f € L?(Q). On dit que u
est solution variationnelle de (44)) si u est solution du probleme de minimi-
sation

(46)

ol on note

{u € Hi(Q), (47

J(u) < J(v) Yo e HLHQ).
5.1.4. Classique implique faible.

Lemma 5.4 (Une solution classique est une solution faible). Soit u une
solution classique de ([44). Alors u € H{() et pour tout fonction ¢ €

HE(Q), on a
/QVu-ngJ:/Qf@. (48)

Proof. Soit v € C%(£2) une solution classique de (44)), et soit ¢ € C°(Q),
ou C2°(£2) désigne 'ensemble des fonctions de classe C*° a support compact
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dans . On multiplie (44) par ¢ et on intégre sur Q (on appellera par la
suite ¢ “fonction test”), on a donc

/Q—cpAu—/wa-

Notons que ces intégrales sont bien définies, puisque Au € C(Q) et f € C(9).
Par intégration par parties (formule de Green), on a :

d d
—Auyp = — /3121&@: /(%u@z«p—/ div (pVu
/Q ; Q ; Q o9 ( )

d
Green ;/Qaiuaiw_ /(99 (n - Vu) (s) p(s) dy(s),

ou n; désigne la i-éme composante du vecteur unitaire normal & la frontiére
0 de €, et extérieur a €2, et dvy désigne le symbole d’intégration sur 0f2.
Comme ¢ est nulle sur 0f2, on obtient :

d
Z/@-u@i«p:/fso,
i=1 78 Q

Prenons maintenant comme fonction test ¢, non plus une fonction de
C°(2), mais une fonction de Hi(Q). Comme ¢ € Hi(Q), par définition, il
existe (pn)neny C C°(Q) telle que

©on — ¢ dans H' lorsque n — 400,

soit encore

lon = @lla = llon = @lliz + 3 1Dign = Diglla 2 0

(2

Pour chaque fonction ¢, € C°(2) on a par :

d
> [ owdien= [ fen Wmen.
i=1 7% @

Or la i-éme dérivée partielle 9;p,, converge vers D;p dans L? (donc dans L?
faible) lorsque n — oo, et ¢, tend vers ¢ dans L?*(2). On a donc :

/ﬁiu@-gpndm — /(%uDigoda:
Q Q

n—-+o0o

et
pndr —> fodr

L’égalité est donc vérifiée pour toute fonction ¢ € H} ().

Montrons maintenant que si u est solution classique de alors u €
HE(Q). En effet, si u € C?(Q), alors u € C(Q) donc u € L?(Q); de plus
d;u € C(Q) donc d;u € L*(2). On a donc bien v € H'(Q). Il reste & montrer
que u € H}(Q).

Pour cela on rappelle (ou on admet) les théorémes de trace suivants.
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Theorem 5.5 (Existence de l'opérateur trace). Soit 2 un ouvert (borné ou
non borné) de R, d > 1, de fronticre O lipschitzienne, alors C°(Q) est
dense dans H*(Q)). On peut donc définir par continuité l’application “trace”,
linéaire continue de H'(QY) dans L?(0), définie par :

Y(u) = ulpq  siu e CXE(Q),
et par

Y(u) = lm ~y(up)

n—-+oo
siu€ HYQ), u=1limy, 1o tn, (Un)neny C C(Q).

Dire que 'application (linéaire) «y est continue est équivalent a dire qu’il
existe C' € Ry tel que
[l z2(a0) < Cllullprq) pour tout u € HY(Q). (3.4)
Notons que y(H(Q)) C L?(09), mais v(H'(Q)) # L*(95). On note
H'?(09) = y(H' ().
Remarquons que si  est un ouvert borné, alors Q est compact et donc
toutes les fonctions C*° sont & support compact dans €.

Theorem 5.6 (Noyau de l'opérateur trace). Soit Q un ouvert borné de RY
de frontiere OS) lipschitzienne, et vy lopérateur trace défini ci-dessus. Alors

kery = H} ().

Si u € C%(2) est une solution classique de (44)), alors v(u) = ulpn = 0
donc u € ker v, et par le théoréme précédent ceci prouve que u € H&(Q)
Nous avons ainsi montré que toute solution classique de vérifie u €

Hi () et Degalite (48). O

5.1.5. Existence et unicité des formulations faible et variationnelle. On cherche
a montrer l'existence et 'unicité de la solution de (46)) et . Pour cela, on
utilise le théoréeme de Lax—Milgram, qu’on rappelle ici.

Soit H un espace de Hilbert et a une forme bilinéaire sur H. On définit

J : H — R par .
J(v) = B a(v,v) — T (v). (49)

Theorem 5.7 (Lax-Milgram). Soit H un espace de Hilbert, soit a une forme
bilinéaire continue coercive sur H et T € H'. Il existe un unique élément u

tel que
u € H, 0
a(u,v) =T(v), Yve H. (50)
De plus, si a est symétrique, u est l'unique solution du probléme de minimi-
sation

u € H, .

{j(“)<3(0), Vv € H. (51)

Ici, a coercive signifie qu'il existe ' > 0 tel que pour tout v € Hy(€),
a(v,v) = C |v| g

Montrons qu’on peut appliquer le théoréme de Lax—Milgram pour les prob-

lémes et .
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Proposition 5.8 (Existence et unicité de la solution de (44))). Si f € L3(9),
il existe un unique u € H} () solution de et ([47).

Proof. Montrons que les hypothéses du théoréme de Lax—Milgram sont véri-
fides. L'espace H = H} () est un espace de Hilbert. La forme bilinéaire a
est définie par

d
a(u,v) = /QVU-VU = Z/QDiuDiv,
i=1

et la forme linéaire T' par
T(v) = / fu.
Q
Montrons que T' € H'. En effet,

T < fllez lolle < 1fllz2 ol

On en déduit que T est continue sur H&(Q), ce qui est équivalent a dire que
T € H~1(Q) (dual topologique de H}(f2)).
Montrons que a est bilinéaire, continue et symétrique. La continuité

s’obtient par
/ Vu - Vv
Q

Les caractéres bilinéaire et symétrique sont évidents.
Montrons que a est coercitive. En effet,

d
1
2 2 2
\V4 = g D; > )
alv, v) /Q Vel — /Q | Div] diam()2 + 1 1l1Z:

par l'inégalité de Poincaré, qui dit qu’il existe C' > 0 tel que pour tout
v € H,

|a(u, v)| = < Vullpz Vol < Jlullg vl

[0l 2 < diam () [ Vo] 2 .

Comme T € H’ et a est bilinéaire, continue, coercitive, le théoréme de Lax—
Milgram s’applique : il existe une unique fonction u € H&(Q) solution de
, et comme a est symétrique, u est I'unique solution du probléme de
minimisation associé. U

5.1.6. Formulation forte.

Definition 5.9 (Solution forte dans H?). Soit f € L?(Q2), on dit que u est
solution forte de dans H*(Q) si

we HX Q) NHNQ) et — Au= f dans L*(Q).

Remarquons que si u est solution forte C? de ([44)), alors u est solution
forte H2. De méme, si u est solution forte H? de alors u est solution
faible de . Les réciproques sont fausses.

On admettra le théoréme de régularité suivant.

Theorem 5.10 (Régularité). Soit Q un ouvert borné de R On suppose
que 0 a une frontiére de classe C?, ou que Q est convexe & frontiére lips-
chitzienne. Si f € L*() et si u € H(Q) est solution faible de ([44)), alors
u € H?(Q). De plus, si f € H™(Q) alors u € H™2(Q).



39

Remark 5.11 (Différences entre les méthodes de discrétisation). Lorsqu’on
adopte une discrétisation par différences finies, on a directement le probléme
. Lorsqu’on adopte une méthode de volumes finis, on discrétise le “bilan”
obtenu en intégrant sur chaque maille. Lorsqu’on utilise une méthode
variationnelle, on discrétise la formulation variationnelle dans le cas de
la méthode de Ritz, la formulation faible dans le cas de la méthode de
Galerkin.

Remarquons également que dans la formulation faible , les conditions
aux limites de Dirichlet homogeénes ©w = 0 sont prises en compte dans I’espace
u € H}(), et donc également dans I'espace d’approximation Hy. Pour le
probléme de Neumann homogéne, les conditions aux limites ne sont pas
explicites dans ’espace fonctionnel.

5.2. Probléme de Dirichlet non homogéne. On se place ici en dimension
1 d’espace, d = 1, et on considére :

—u" = f sur (0,1),
u(0) = a, (3.10)
u(l) = b,

ol a et b sont des réels donnés. Ces conditions aux limites sont dites de
type Dirichlet non homogéne ; comme a et b ne sont pas forcément nuls, on
cherche une solution dans H'(f2) et non plus dans Hg(Q).

Cependant, pour se ramener & l’espace H& (Q) (en particulier pour obtenir
que le probléme est bien posé grace au théoréme de Lax—Milgram et a la
coercivité de la forme bilinéaire a(u, v) = [, VuVov sur Hj(£2)), on va utiliser
une technique dite de “relévement”.

On pose u = ug + ue ol ug est définie par :

uo(x) =a+ (b—a)x.

On a en particulier ug(0) = a et up(1) = b. On a alors u.(0) = 0 et u.(1) = 0.
La fonction u, vérifie donc :

_u// — f
ue(0) =0,
ue(1) =0,

dont on connait la formulation faible et dont on sait qu’il est bien posé.
Donc il existe un unique u € H'(Q) vérifiant u = ug + u., ot v, € H(Q)
est 'unique solution du probléme

/11/81)' = /1fv Yo € HE((0,1)).
De maniére plus géonérale, soitoun relévement
up € H(;b((o, 1)) ={ve H'; v(0) =a et v(1) = b},
et soit w € HJ((0,1)) 'unique solution faible du probléme :
=,
u(0) =0,
u(l) = 0.
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Alors u + wu; est I'unique solution faible de (3.10)), ¢’est-a-dire la solution du
probléme

u € Hyp((0,1)),

1 1
/ v = / fv, Vv € H((0,1)).
0 0

On pourrait montrer que u ne dépend pas du relévement.

Considérons maintenant le cas de la dimension 2 d’espace : d = 2. Soit 2

un ouvert borné de R%, considérons le probléme :
—Au=f dans €,
{ u=g sur 0. (3.11)

Pour se ramener au probléme de Dirichlet homogéne, on veut construire un
relévement, c’est-a-dire une fonction ug € H'(Q) telle que y(ug) = g, ot 7y est
I’application trace. On ne peut plus le faire de maniére explicite comme en
dimension 1. En particulier, on rappelle qu’en dimension 2, I'espace H(£2)
n’est pas inclus dans C(Q), contrairement au cas de la dimension 1.

Mais si g € H'/2(99), on sait qu’il existe ug € H*(Q) tel que g = y(uo).
On cherche donc u sous la forme u = u, +ug avec ue € H} () et ug € H(Q)
telle que y(up) = g.

Soit v € H} () ; on multiplie par v et on intégre sur € :

/Q—Auv:/ﬂfv,
/QVqu:/va.

Comme u = ug + e, on a donc :

Ue € H&(Q)v

/Vuer:/fv—/VuOVv, Yo € Hy(Q).
Q Q Q

En dimension 2, il n’est pas toujours facile de construire le relévement
ug. 1l est donc usuel, dans la mise en ceuvre des méthodes d’approximation
(par exemple par éléments finis), de se servir de la formulation suivante,
équivalente a (3.12)) :

c’est-a-dire :

(3.12)

u € {ve HY(Q); y(v) = g sur 09},

/Vqu:/fv, Yo € HY (). (3.13)
Q Q

5.3. Condition de Neumann. Considérons maintenant le probléme
—Au = f, dans €,

52
@:O sur 0f), (52)
on
ol
% =n-Vu,

on
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n étant le vecteur normal a 0f) pointant vers l’extérieur. On appelle ce
probléme probléme de Dirichlet avec conditions de Neumann homogénes.
En intégrant la premiére équation du systéme, on voit que

e [ [0
Q s On  Jo

donc une condition nécessaire d’existence d’une solution est que fQ f=0.

On remarque que la solution de n’est pas unique, puisque si u est
solution alors u + ¢ est aussi solution, pour tout ¢ € R. Pour éviter ce
probléme on va chercher les solutions de a moyenne nulle. On cherche
donc a résoudre dans ’espace

H:{veHl(Q); /Qv:o}.

Maintenant a est coercive sur H grace a l'inégalité suivante, qui sera
admise.

Lemma 5.12 (Poincaré-Wirtinger). Soit Q un ouvert borné de R? de fron-
tiere lipschitzienne, alors il existe C' € R% , ne dépendant que de €2, tel que
pour tout u € H(Q), on a

u - —

U < C|Vu . 53

L2(Q)

On a alors a(u,u) = HVUH%Q(Q) et

[ulf = lulfz +a(u,u) < (1+C?) alu,w),

donc la constante de coercivité est o = (1 + C?)~L.
Le probléme

u € H,

a(u,v):/fv Vv e H,
admet donc une unique solution.

5.4. Formulation faible et formulation variationnelle. Nous donnons
ici un exemple de probléme pour lequel on peut établir une formulation faible,
mais pas variationnelle. On se place en une dimension d’espace d = 1, et
on considére 2 =]0,1[ et f € L?(]0,1[). On s’intéresse au probléme suivant
d’advection diffusion

{—u" +u = f, dans |0, 1],

w(0) = u(1) = 0, (54)

Cherchons une formulation faible. On choisit v € H}(£2), on multiplie ([54)
par v et on inteégre par parties :

/u'v/—l—/u'v:/fv.
Q Q Q
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Il est donc naturel de poser :

a(u,v) = /Q u'v' + /Q dv,  T(v)= /Q fo.

Il est évident que T est une forme lindaire continue sur Hg () (c’est a dire
T € H~1(Q)) et que la forme a est bilinéaire continue, mais pas symétrique,
donc on n’a pas l'existence du minimum dans (51)). De plus elle est coercive.

En effet,
1
a(u,u):/u'2+/ulu:/u'2+/(u2)’.
Q Q Q Q2

Or, comme u € H(Q), on a u = 0 sur 9 et donc

/(uQ)’ =u?(1) — u?(0) = 0.
Q

On en déduit que :

o) = | Wy,

et par 'inégalité de Poincaré, on conclut que a est coercive sur H (). On en
déduit par le théoréme de Lax—Milgram, I’existence et 1'unicité de u solution
du probléme

u € Hy(]0,1]),

/01 (u’v’ + u'v) = /01 fu.

6. METHODES DE RITZ ET GALERKIN

6.1. Principe général de la méthode de Ritz. On se place sous les
hypothéses suivantes :

H est un espace Hilbert,

a est une forme bilinéaire continue coercitive et symétrique, (55)
TeH.
On cherche a calculer u € H telle que :
a(u,v) = T(v), Yv e H, (56)

ce qui revient a calculer u € H solution du probléme de minimisation (3.8),
avec J définie par (3.9).

L’idée de la méthode de Ritz est de remplacer H par un espace Hy C H
de dimension finie (ou dim Hy = N), et de calculer U solution de

U € Hy,
(57)
J(U) < J(v), Yv € Hy,
en espérant que U soit “proche” (en un sens a définir) de w.

Theorem 6.1. Sous les hypothéses , st Hy est un sous-espace vectoriel
de H et dim Hy < +oo alors le probléeme admet une unique solution.
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Proof. Puisque H est un espace de dimension finie inclus dans H, c¢’est donc
aussi un Hilbert. On peut donc appliquer le théoréme de Lax—Milgram, et
on en déduit I'existence et 'unicité de U € Hy solution de , qui est aussi
solution de :

U € Hy,
{a(U,v) =T(v), Vv e Hy.

O

Nous allons maintenant exposer une autre méthode de démonstration
du théoréeme qui a I'avantage d’étre constructive, et qui nous permet
d’introduire les idées principales des méthodes numériques envisagées plus
loin. Comme ’espace Hy considéré dans le théoréme est de dimension N, il
existe une base (¢1,...,¢n) de Hy. Siu € Hy, on peut donc développer

N
u="Y up;.
i=1
On note
U= (up,...,un) e RV,

L’application & qui & u associe U est une bijection de Hy dans RY. Posons
j=Jo& 1. On adonc:

A N N
JU) = J(u) = 5a (Z Ui pi, ZWPz) - T(Z uiSOi)
i=1 i=1 i=1

1 N N N 1
~ 9 Z Z“i“ja(% ©j) — ZuiT((ﬂi) = iUtKU -U'G
i=1j=1 i=1

ot K € My n(R) est définie par K;; = a(p;, ¢j), et ot G; = T(;). Chercher
u solution de est donc équivalent a chercher U solution de :

UeRY,
N (58)
JU)<ji(V), VWV eRY,
1
§(V) = 5vtKv ~V'G.  (3.24)

I1 est facile de vérifier que la matrice K est symétrique car a 'est. De méme,
pour tout U € RV,

(U,KU) = Z UiK;jUj = Z UiUja(pi, ¢;)

1<i,j<N 1<i,j<N
2
N N N
— _ 2
=a E Ujpj, E Ujpj z g Ujpj ( -)-_base a|U]
j=1 j=1 a coercive j=1 Pj)i

donc K est définie positive par coercivité de a. Donc j est une fonctionnelle
quadratique sur RY et on a donc existence et unicité de U € RN tel que
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J(U) < j(V) V¥V € RV, L'unique solution du probléme de minimisation ([58)
est aussi la solution du systéme linéaire

KU =G,
on appelle souvent K la matrice de rigidité.

6.2. Résumé sur la technique de Ritz.

1) On se donne Hy C H.

2) On trouve une base de Hy.

3) On calcule la matrice de rigidité K et le second membre G
4) On minimise j par la résolution de KU = G.

5) On calcule la solution approchée :

(
(
(
(
(

N
u™ =3 "ui;.
=1

On appelle Hy lespace d’approximation. Le choix de cet espace sera
fondamental pour le développement de la méthode d’approximation. Le
choix de Hy est formellement équivalent au choix de la base (¢;)i=1..n-
Pourtant, le choix de cette base est capital méme si u™) ne dépend que du
choix de Hy et pas de la base.

6.3. Choix de la base. Un premier choix consiste & choisir des bases in-
dépendantes de N c’est a dire

{base de Hyy1} = {base de Hy} U {¢on+1}-

Les bases sont donc emboitées les unes dans les autres. Considérons par
exemple H = H'(]0,1]), et 'espace d’approximation :

Hy = Vect{1,X,..., xN"1}.

Les fonctions de base sont donc ; = X~ ¢ =1,..., N. On peut remarquer
que ce choix de base améne & une méthode d’approximation qui donne des
matrices pleines. Or, on veut justement éviter les matrices pleines, car les
systémes linéaires associés sont coliteux (en temps et mémoire) a résoudre.

Le choix idéal serait de choisir une base (goi)z-:17.,,,N qui diagonalise a,
c’est-a-dire telle que

a(pi, pj) = Nidij,

s 1 sii=j, ,
CA {O sinon. (3.25)
On a alors K = diag(\1,...,An), et explicitement
N
T .
W M) — Z (i)

im1 a(wi, pi)

Considérons par exemple le probléme de Dirichlet , ou a(p, ) = fQ V-
V. Si p; est la i-éme fonction propre de I'opération —A avec conditions aux
limites de Dirichlet associée & A;, on obtient bien la propriété souhaitée. Mal-
heureusement, il est rare que ’on puisse connaitre explicitement les fonctions
de base ;.

7.
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Un deuxiéme choix consiste a choisir des bases dépendantes de N. Mais
dans ce cas, la base de H n’est pas incluse dans celle de Hy 1. La technique
des éléments finis qu’on verra au chapitre suivant, est un exemple de ce choix.
Dans la matrice K obtenue est creuse (c’est a dire qu’un grand nombre de
ses coefficients sont nuls). Par exemple, pour des éléments finis appliqués a
un opérateur du second ordre, on peut avoir un nombre de coefficients non

nuls de l'ordre de O(N).

6.4. Convergence de ’approximation de Ritz. Une fois qu'on a calculé
uy solution de , il faut se préocupper de savoir si u™) est une bonne
approximation de u solution de , c’est a dire de savoir si

(N)

u — u.

N—+4o00

Pour vérifier cette convergence, on va se servir de la notion de consistance.

Definition 6.2 (Consistance). On dit que l'approzimation de Ritz définie
par 'espace Hy C H avec dim Hy = N < +o00 est consistante si

d(u,Hy) — 0, Vu € H, (59)
n——+00
La condition est équivalente &
inf |lu—v|| — 0, Yu e H.
veEHN n—-+o0o

L’autre notion fondamentale pour prouver la convergence est la stabilité,
elle méme obtenue grace a la propriété de coercivité de a. Par stabilité, on
entend estimation a priori sur la solution approchée u®) (avant méme de
savoir si elle existe), ott uN) est solution de ou encore de :

U(N) € Hy
(60)
a(u™) v) = T(v) Vv e Hy.

On a l'estimation a priori suivante sur uy.
Proposition 6.3 (Stabilité). Sous les hypothéses du théoréme on a

H“(N)H < Tl
H [0

Proof. On a

coercive

= 7™y < T 1u™| 5.
(u™) 5 TN e '™ |
continue
O

Theorem 6.4 (Céa). Soit H un espace de Hilbert réel. Soit a une forme bil-
inéaire continue symétrique coercive, soit M > 0 et a > 0 tels que a(u,v) <
Mllullgllv]| g et alu,uw) > allul|?;. Soit T € H' une forme linéaire continue.
Soit w € H l"unique solution du probléme

u € H,
{a(u,v) =T(v), Vo € H. (61)
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Soit Hy C H tel que dim Hy = N, et soit u'™N) € Hy lunique solution de

U(N) € Hy,
(62)
a(u™) v) = T(v), Vv € Hy.

Alors
Ju—u™] < M e, ). (63)
H [0

Proof. @ On va montrer que u) est la projection de u sur Hpy pour le
produit scalaire (-,-), induit par a, défini de H x H par (u,v), = a(u,v).
On note ||ull, = v/a(u,u), la norme induite par le produit scalaire a. La
norme || - ||, est équivalente & la norme || - ||z, en effet, grace a la coercivité
et la continuité de a,

allullf < llull < MlJullZ.

Donc (H, | - |lo) est un espace de Hilbert. Soit u la solution de (6I), et soit
v := Py, u la projection orthogonale de u sur H relative au produit scalaire
a(-,-). Par définition de la projection orthogonale, on a donc

Pyyu—u= —PﬁNu € Hﬁ,
soit encore
a(Pryu—u,w) =0, Vw € Hy.

En soustrayant et (62), on obtient la condition d’orthogonalité de
Galerkin

a(u —u™ w) =0, Vw € Hy.
En combinant ces deux relations, il vient
a(PHNu—u(N),w) =0, Yw € Hy.

(N) ¢ Hpy. En prenant w = Py, u — u(N), on obtient

a(Pryu — u™), Pryu — u™y = 0.

Or Pyyu—u

La coercivité de a implique alors Pr,u — uN) =0, donc

uN) = P u.
e Par définition de Pp,, on a:
lu = Payully < llu—vlz, Vo€ Hy,
ce qui s’écrit (puisque Py, u = u)y
a(u —u™ u— ™) <alu—v,u—0v), Vv € Hy.

Par coercivité et continuité de la forme bilinéaire a, on a donc Vv € Hy,
allu —u™MZ < alu—u™)u—u™)) <alu—v,u—v) < M|u—ol|%.

On en déduit que :

M
Ju—u™ g </ = u—v|a, Vo€ Hy.
!
En passant a I'inf sur v, on obtient alors (63]). O
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6.5. Méthode de Galerkin. On se place maintenant sous les hypothéses
suivantes :
H espace de Hilbert,

a : forme bilinéaire continue et coercive, (3.30)
TeH.

Remarquons que maintenant, a n’est pas nécessairement symétrique, les hy-
pothéses (3.30) sont donc plus générales que les hypotheéses (3.21). On con-

sidére le probléme
u € H, 64
{a(u,v) =T (v), v e H. (64)

Par le théoréme de Lax—Milgram, il y a existence et unicité de u € H solution
de (63).

Le principe de la méthode de Galerkin est similaire a celui de la méthode
de Ritz. On se donne Hy C H, tel que dim Hy < +oo, et on cherche &
résoudre le probléme approché :

(P ) U(N) € Hy,
N
a(u™ v) = T(v), Vv € Hy.

Par le théoréme de Lax—Milgram, on a immédiatement :

(65)

Theorem 6.5. Sous les hypotheses, si Hy C H et dim Hy = N, il existe
un unique uN) € Hy solution de (165)) .

Comme dans le cas de la méthode de Ritz, on va donner une autre méth-
ode, constructive, de démonstration de ’existence et unicité de uy qui per-
mettra d’introduire la méthode de Galerkin. Comme dim Hy = N, il existe
une base (p1,...,pn) de Hy. Soit v € Hy, on peut donc développer v sur
la base

N
v = E Vi Pis
=1

et identifier v au vecteur (vi,...,vy) € RY. En écrivant que u™) satis-
fait pour tout v = ¢;, ¢t =1,..., N :
a(u,(pi) :T(Sol)a Vi = 17"'an
et en développant u sur la base (¢;)i=1,... n, on obtient :
N

Za(%,%)ugm =T(:), Vi=1,...,N.
j=1

On peut écrire cette derniére égalité sous forme d’un systéme linéaire

KU =G, (66)
T
N N N .
ou U = (Ug )7'-‘7u5\[ )> ) KZ] = a(@])@l) et G; = T(sz), pour 1,7 =
1,..., N. La matrice K n’est pas en général symétrique.

Proposition 6.6. Sous les hypothéses du Théoreme (6.5)), le systéeme linéaire
admet une unique solution.
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Proof. On va montrer que K est inversible en vérifiant que son noyau est
réduit & {0}. Soit w € RY tel que Kw = 0. Décomposons w sur le N base
(Spla---a(PN) de HN. On a

N
Za ()OJ7S01 wj _0
7=1

Multiplions cette relation par w; et sommons pour ¢ =1 & N, on obtient

ZZ SOJaSOz wjw; = 0.
i=1 j=1

Soit encore : a(w,w) = 0 ott w := (wy,...,wy)T. Par coercivité de a, ceci
entraine que w = 0. On en déduit que w; =0, Vi = 1,..., N, ce qui achéve
la preuve. O

Remark 6.7. Si a est symétrique, la méthode de Galerkin est équivalente a
celle de Ritz.

En résumé, la méthode de Galerkin comporte les mémes étapes que la
méthode de Ritz, c’est a dire :

(1) On se donne Hy C H.

(2) On trouve une base de Hy.

(3) On calcule K et G.

(4) On résout KU = G.

(5) On écrit u¥) = Zf\il Ui ;.
La seule différence est que I'étape 4 n’est pas issue d’un probléme de min-
imisation. Comme pour la méthode de Ritz, il faut se poser la question
du choix du sous espace Hy et de sa base, ainsi que de la convergence de
I’approximation de u solution de par u¥) obtenue par la technique de
Galerkin. En ce qui concerne le choix de la base {¢1,...,¢on}, les possibil-
ités sont les mémes que pour la méthode de Ritz, voir paragraphe 3.2.1. De
méme, la notion de consistance est identique a celle donnée pour la méthode
de Ritz (voir définition 3.19) et la démonstration de stabilité est identique
a celles effectuée pour la méthode de Ritz ; voir proposition 3.20 page 109.
On peut alors établir le théoréme de convergence :

Theorem 6.8. Sous les hypothéses du théoréme (57)), si u est la solution
de (64) et un la solution de (65)), alors
M
lu—u™) ||z < — d(u, Hy). (67)
e

Ici encore, M et a sont tels que : a|[v||? < a(v,u) < M|[v||? pour tout v
dans H (les réels M et « existent en vertu de la continuité et de la coercivité
de a).

Proof. Comme la forme bilinéaire a est coercive de constante «, on a :
allu — ™) < alu—u™) u—uM).
On a donc, pour tout v € H :

aflu — ™% < atu— o™ u—v) + alu — u™) v — ).
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a(u —u™ v — ™) = q(u, v — ™) = a(u™), v — M),
et par définition de u et ©N), on a :
a(u,v —u™N) = T(w — u)), Yve H
a(u™ v — M)y = T(v —uM) Vv e Hy.
On en déduit que :
aflu = ™M <alu—u™ u—v), Vv € Hy,

et donc, par continuité de la forme bilinéaire a :

allu = u™|3 < Ml = a5 [Ju— vl .
On obtient donc :

M
= u™ g < —llu—vlu,  ¥oe€Hy,

ce qui entraine . O

Remark 6.9. On peut remarquer que l’estimation obtenue dans le cadre
de la metode de Galerkin est moins bonne que [’estimation obtenue dans
le cadre de la methode de Ritz. Cect est normal, puisque la methode de Ritz
est un cas particulier de la methode de Galerkin.

Grace au théoréme , on peut remarquer que u(™) converge vers u

dans H lorsque N tend vers +oo dés que d(u, Hy) — 0 lorsque N — +o0.
C’est donc la encore une propriété de consistance dont nous avons besoin.

La propriété de consistance n’est pas toujours facile & montrer directement.
On utilise alors la caractérisation suivante :

Proposition 6.10 (Caractérisation de la consistance). Soit V un sous espace
vectoriel de H dense dans H. On suppose qu’il existe une fonction ry : V —
Hy telle que pour tout v € V,

— — 0
lo=ra@lla  — 0,

alors

Proof. Soit v € V, et w = ry(v). Par définition, on a
d(u, Hy) < |lu =y ()l < lu—vllg +[lv =75 ()]la-

Comme V est dense dans H, pour tout ¢ > 0, il existe v € V, tel que
|lu—v||zr < e. Choisissons v qui vérifie cette derniére inégalité. Par hypothése
sur ry :

Ve >0, dNp tel que N > Ny = ||lv —ry(v)|| < e.

Donc si N > Ny, on a d(u, Hy) < 2e. On en déduit que d(u, Hy) — 0
quand N — +o0. O
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7. LA METHODE DES ELEMENTS FINIS

La méthode des éléments finis est une fagon de choisir les bases des espaces
d’approximation pour les méthodes de Ritz et Galerkin.

7.1. Principe de la méthode. On se limitera dans le cadre de ce cours a

des problémes du second ordre. L’exemple type sera le probléme de Dirichlet
qu’on rappelle ici :

—Au=f dans Q,

{ (68)

u=0 sur 0,

et espace de Hilbert sera I'espace de Sobolev H'(2) ou Hg(Q).
On se limitera & un certain type d’éléments finis, dits “de Lagrange”. Don-
nons les principes généraux de la méthode.

Eléments finis de Lagrange. Soit Q C R? (ou R?). Soit H l'espace fonction-
nel dans lequel on recherche la solution (par exemple H}(f2) s'il s’agit du
probléme de Dirichlet (3.1)). On cherche Hy C H = H}(Q) et les fonc-
tions de base ¢1,...,¢on. On va déterminer ces fonctions de base & partir
d’un découpage de 2 en un nombre fini de cellules, appelés “éléments”. La
procédure est la suivante :

(1) On construit un “maillage” 7 de © (en triangles ou rectangles) que
I'on appelle éléments K.

(2) Dans chaque élément, on se donne des points que I’on appelle “noeuds”.

(3) On définit Hy par :

HN:{u:Q%R/umePk, VKeT}mH,

ou P désigne I'’ensemble des polynémes de degré inférieur ou égal
a k. Le degré des polyndémes est choisi de maniére a ce que u soit
entiérement déterminée par ses valeurs aux noeuds. Pour une méth-
ode d’éléments finis de type Lagrange, les valeurs aux noeuds sont
également les “degrés de liberté”, c.a.d. les valeurs qui déterminent
entiérement la fonction recherchée.

(4) On construit une base {¢;,...,on} de Hy tel que le support de
; soit “le plus petit possible”. Les fonctions ¢; sont aussi appelées
fonctions de forme.

7.1.1. Ezemple en dimension 1. Soit Q =]0,1[C R et soit H = HJ([0,1]). On
cherche un espace Hy d’approximation de H. Pour cela, on divise 'intervalle
10,1[ en N intervalles de longueur

[
N+1
Onposez; =1,i=0,...,N + 1.
Les étapes 1. a 4. décrites précédemment donnent dans ce cas :

(1) Construction des éléments. On a construit n + 1 éléments K; =
]xiyl'i—&-l[, 1= 0,...,N.

(2) Noeuds. On a deux noeuds par élément, (z; et ;4 sont les noeuds
de K;, i = 0,...,N). Le fait que Hy C Hg(]0,1]) impose que les
fonctions de Hpy soient nulles en zg = 0 et zx4+1 = 1. On appelle
Z1,...,TN les noeuds libres et xg,x 1 les noeuds liés. Les degrés
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de liberté sont donc les valeurs de v en 1,...,zy. Aux noeuds liés,
on a u(xp) = u(xy4+1) = 0.
(3) Choix de I’espace. On choisit comme espace de polynéme :

Py ={ax+b, a,be R}
et on pose :
HN:{U:Q—HR’M;Q ePy, Vie {1,...,N},uecQ), u(O)zu(l)zO}.

Rappelons que H = H(]0,1]) € C([0,1]). Avec le choix de Hy, on
a bien Hy C H.
(4) Choix de la base de Hy.

On peut définir ¢; pour i =1 & N par :

; » affine par morceaux, continue,

Supp(%) = [:Bi—laxi—i-l]a
wi(r;) =1,
wi(wi—1) = @i(wiy1) =0,

Il est facile de voir que ¢; € Hy et que {p1,...,pn} engendre Hy, c’est &
dire que pour tout u € Hy, il existe (ug,...,un) € RV tel que

N
=1

7.1.2. Exemple en dimension 2. Soit {2 un ouvert polygonal de R?, et H =
H}(Q). Les étapes de construction de la méthode des éléments finis sont
encore les mémes.
(1) Eléments : on choisit des triangles.
(2) Noeuds : on les place aux sommets des triangles. Les noeuds z; €
(intérieurs a ) sont libres, et les noeuds z; € 99 (sur la frontiére de
2) sont liés. On notera ¥ I’ensemble des noeuds libres, ¥ I'ensemble
des noeuds liés, et X = XU Xp.
(3) Espace d’approximation. L’espace des polynomes est I’ensemble
des fonctions affines, noté P;. Une fonction p € IP; est de la forme :

p:R2—>R, x = (x1,22) ¥ a1x] + agws + b,

avec (a1,as,b) € R3. L’espace d’approximation Hy est donc défini
par :

HN:{UE (Q), U|K€P1, VK, et u(xi):(), Va:ieEF}.
(4) Base de Hy : On choisit comme base de Hy la famille de fonctions

{¢i}i=1,.. N, ot N = card(Xr), ott ¢; est définie, pour i =1 a N, par

©; est affine par morceaux,
901(331) =1,
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En résumé. Les questions a se poser pour construire une méthode d’éléments
finis sont donc :

1) La construction du maillage.

2) Un choix cohérent entre éléments, noeuds et espace des polyndmes.
3) La construction de I'espace d’approximation H et de sa base {¢; }i=1...
4) La construction de la matrice de rigidité K et du second membre G.
(5) L’évaluation de d(u, Hy) en vue de 'analyse de convergence.

(
(
(
(

Pour construire les éléments, il faut éviter les angles trop grands ou trop
petits. Il faut mettre beaucoup d’éléments la ot u varie rapidement (ceci ne
peut se faire que si on connait a priori les zones de de variation rapide, ou si
on a les moyens d’évaluer I'erreur entre la solution exacte du probléme et la
solution calculée et de remailler les zones ou celle—ci est jugée trop grande.

On a vu aux paragraphes précédents que l'erreur entre la solution exacte u
recherchée et la solution (™) obtenue par la méthode de Ritz ou de Galerkin
est majorée par une constante fois la distance entre H et Hy. On a donc
intérét & ce que cette distance soit petite. Pour ce faire, il parait raisonnable
d’augmenter la dimension de I'espace Hy. Pour cela, on a deux possibilités

e augmenter le nombre d’éléments : on augmente alors aussi le nombre
global de noeuds, mais pas le nombre local.

e augmenter le degré des polynoémes : on augmente alors le nombre de
noeuds local, donc on augmente aussi le nombre global de noeuds,
mais pas le nombre d’éléments. Ce deuxiéme choix (augmentation
du degré des polynémes) ne peut se faire que si la solution est suff-
isamment réguliére ; si la solution n’est pas réguliére, on n’arrivera
pas a diminuer d(H, Hy) en augmentant le degré des polynomes.

7.2. Convergence des éléments finis P; en dimension 1. On note
I’espace des éléments finis Py

Vi = {UGC([O, 1]) tel que U‘[ € P pour tout 0 < j gn}

)41
et le sous-espace des fonctions s’annulant aux bords

VY= {v eV, |v(0)=uv(l) =0}

7.2.1. Enoncé du théoréme de convergence. La méthode des éléments finis
est une méthode de Galerkin ou ’espace variationnel est V}? . On se place en
dimension 1, et © =]0, 1[. Le probléme de Galerkin définit u;, € V) via

1 1
/ upvy, = / fon, Yo, € V). (69)
0 0

Theorem 7.1 (Convergence de la méthode P1). Soit u € C2([0,1]) la solu-
tion de (68) et soit u, € V)2 la solution de (69). La méthode des éléments
finis Py converge, c’est-a-dire qu’il existe une constante C indépendante de
h et de f telle que

1w —un) | 220,1) < CR | fll12(0,1)-
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7.2.2. Preuve du théoréeme [7 1]

Definition 7.2 (Opérateur d’interpolation Py). On appelle opérateur d’interpolation
Py Uapplication linéaire ry, de C([0,1]) dans V}, définie, pour tout v € C([0,1]),
par

n+1

(rao)(x) ==Y v(x;) ¢j(x)

Jj=0

Par un dessin, on voit que rpv est la fonction affine par morceaux qui
coincide avec v sur les sommets du maillage ;.
On commence par montrer le lemme technique suivant.

Lemma 7.3. Il existe une constante C' indépendante de h telle que, pour
tout v € C%(]0,1]),

[ = ravll 201y < B2 10" L2(0,1) (70)
et
[0 = (rno) [l 20,1y < P10 122(0,1)- (71)

Proof. Soit v € C2%([0,1]). Par définition, I'interpolée 7,v est une fonction
affine. Pour tout z €]z, zj41[, on a

v(zj41) — v(7;) (

Tr—x;). 72
E—— ) (72

(rnv)(x) = v(z;) +

donc

v(@) = rao(z)

o(z) — (U(xj)+ v(@j41) — v(;) (x_xj))

@ Tjt1 — Lj

T
xr—T; Jj+1
/ e / v
Tj+1 — Ty

(z —zj) v (25 4 02) — (@ — 25) V' (x5 + 0))
x;+0;
= (z — z) / V(1) dt,
1‘j+0x

par application de la formule des accroissements finis (il existe un y tel que la
fonction passe par sa moyenne) avec 0 < 8, <z —xjet 0<0; < zjp1—xj =
h. On en déduit, en utilisant I'inégalité de Cauchy—Schwarz,

2 2 Ti+t " ’ 3 Fi+t " 2
lo(z) — rho(@)2 < b / " (#)] dt gh/ W (#)[2 dt.

J J
En intégrant par rapport a x sur 'intervalle [z}, z;11], on obtient
Tt ) L [F )
[ ) - me@rar<at [T R
:Ej Zj

ce qui, par sommation en j, donne exactement ([70)).
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La démonstration de est tout a fait similaire : pour v € C%([0,1]) et
x €]xj, xj41], on écrit

V' (x) — (rpv) (z) = ' (z) — v(ijrl)h— v(z;)

1 [ -veya= [T [ e aar

J J

donc en appliquant Cauchy-Schwarz deux fois

() — (ro) (@ </+/ dydt>2 < ;L/W (/t q/')Q dt
el
—h / e

J

Ceci prouve le lemme suivant

Lemma 7.4 (D’interpolation). Soit r, opérateur d’interpolation Py. Il
existe une constante C' indépendante de h telle que, pour tout v € C?([0,1])
et tout h €]0,1],

v = ravll 0,1y < V2RV |l 12(0.1)- (73)

On peut maintenant prouver le théoréme en utilisant Céa. On définit
I’espace

W= {v e H'([0,1],R) | v(0) = v(1) = 0},

muni du produit scalaire

1
b= | ¥4,
0
on note la norme associée ||y .

Lemma 7.5. L’application ||y, est une norme sur Hy([0,1]).

Proof. On a la positivité, 'homogénéité et I'inégalité triangulaire. On justifie
la séparation. Soit w € HE ([0, 1]) telle que |wly, = 0. Alors w' = 0 et comme
H1([0,1]) € C°([0,1]), w est constante. Puisque w(0) = 0, alors w = 0. [

Nous souhaitons appliquer le lemme de Céa. Il faut vérifier que a est
bilinéaire continue symétrique coercive et que 1" est continue, tout cela pour
lespace Vp. On a a(v,v) = ||UH‘2/0 donc a est 1-coercive. De plus, |a(v,u)| <
V' g2 1w/l 2 = lvlly, luly, donc a est continue avec M = 1. On laisse les
autres propriétés en exercice, et on peut appliquer le lemme de Céa.
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On majore 'estimation en choisissant v, = rpu qui est bien un élément

de V,?

”(U - Uh)/HLQ = |u - uhHVO < info Ju — w”VO
Théoe wEVh
(63)
< u—rpuly < |u—rpu < V2h o
< vy < =l [0l 2201y

= V2h|fl20) -
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