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1. Approximation des dérivées par différence finie

Un problème qu’on rencontre souvent en analyse numérique est l’approximation
de la dérivée d’une fonction f : [a, b] → R sur un intervalle donné [a, b].

1.1. Méthode générale. Une approche naturelle consiste à introduire n+1
nœuds xk ∈ [a, b] uniformément répartis, c’est-à-dire tels que

x0 = a, xn = b, xk+1 = xk + h, ∀k ∈ {0, . . . , n− 1},

où

h :=
b− a

n
.

On approche alors f ′(xi) en utilisant les valeurs nodales f(xk), dont on
considère avoir l’accès. On note u′i l’approximation de f ′(xi), donc

u′i ≃ f ′(xi).

De manière générale, on définit les u′i via l’équation

h

m∑
k=−m

αk u
′
i−k =

m′∑
k=−m′

βk f(xi−k), (1)

où {αk}, {βk} ∈ R sont m+m′ + 1 coefficients à déterminer, et où on peut
utiliser la convention u′j = 0 et f(xj) = 0 pour tout j /∈ {0, . . . , n}. Cette
équation déterminant une approximation est appelée schéma.

Le coût du calcul est un critère important dans le choix du schéma, il faut
par exemple noter que si m ̸= 0, la détermination des quantités u′i requiert
la résolution d’un système linéaire.

Definition 1.1 (Stencil). L’ensemble des nœuds impliqués dans la construc-
tion de la dérivée de y en un nœud donné est appelé stencil.

1.2. Méthodes des différences finies classiques.

1.2.1. Méthode “forward”. Le moyen le plus simple pour construire une for-
mule du type (1) consiste à revenir à la définition de la dérivée. Si f ′(xi)
existe, alors

f ′(xi) = lim
h→0+

f(xi + h)− f(xi)

h
. (2)

Definition 1.2 (Différence finie progressive). En remplaçant la limite par
le taux d’accroissement, avec h fini, on obtient l’approximation

u′i,FD =
f(xi+1)− f(xi)

h
, ∀i ∈ {0, . . . , n− 1}. (3)
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Cette relation est un cas particulier de (1) où m = 0, α0 = 1, m′ = 1,
β−1 = 1, β0 = −1, β1 = 0. Le second membre de (3) est appelé différence
finie progressive, ou “en avant”.

L’approximation que l’on fait revient à remplacer f ′(xi) par la pente de
la droite passant par les points (xi, f(xi)) et (xi+1, f(xi+1)).

Pour estimer l’erreur commise, il suffit d’écrire le développement de Taylor
de f (qui sera toujours supposée assez régulière). En effet, par le théorème
de Taylor-Lagrange, il existe βi ∈]xi, xi+1[ tel que

f(xi+1) = f(xi) + hf ′(xi) +
h2

2
f ′′(βi).

Ainsi,

f ′(xi)− u′i,FD = −h

2
f ′′(βi).

1.2.2. Méthode centrée. Au lieu de (3), on aurait pu utiliser un taux d’accroissement
centré, obtenant alors l’approximation suivante.

Definition 1.3 (Différence finie centrée).

u′i,CD =
f(xi+1)− f(xi−1)

2h
, ∀i ∈ {1, . . . , n− 1}. (4)

Le schéma (4) est un cas particulier de (1) où m = 0, α0 = 1, m′ = 1,
β−1 = 1

2 , β0 = 0, β1 = −1
2 . Le second membre de (4) est appelé dif-

férence finie centrée. Géométriquement, l’approximation revient à remplacer
f ′(xi) par la pente de la droite passant par les points (xi−1, f(xi−1)) et
(xi+1, f(xi+1)).

Lemma 1.4. Il existe βi ∈ [xi−1, xi+1] tel que

f ′(xi)− u′i,CD = −h2

6
f (3)(βi).

Démonstration. On utilise le développement de Taylor autour de xi aux
points xi+1 = xi + h et xi−1 = xi − h et le théorème de Taylor-Lagrange, on
obtient

f(xi + h) = f(xi) + hf ′(xi) +
h2

2
f ′′(xi) +

h3

6
f (3)(β1),

f(xi − h) = f(xi)− hf ′(xi) +
h2

2
f ′′(xi)−

h3

6
f (3)(β2),

où β1 ∈]xi, xi + h[ et β2 ∈]xi − h, xi[. Ainsi,

f ′(xi)− u′i,CD = −h2

12

(
f (3)(β1) + f (3)(β2)

)
.

Puisque f (3) est continue sur ]xi − h, xi + h[, la moyenne

f (3)(β1) + f (3)(β2)

2

est une valeur intermédiaire de f (3) sur cet intervalle. Par théorème des
valeurs intermédiaires, il existe βi ∈]xi − h, xi + h[ tel que

f (3)(βi) =
f (3)(β1) + f (3)(β2)

2
.
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□

La formule (4) fournit donc une approximation de f ′(xi) qui est du second
ordre par rapport à h.

1.2.3. Méthode “backward”. Enfin, on peut définir de manière analogue un
troisième schéma.

Definition 1.5 (Différence finie rétrograde).

u′i,BD =
f(xi)− f(xi−1)

h
, ∀i ∈ {1, . . . , n}. (5)

L’erreur suivante lui correspond

f ′(xi)− u′i,BD =
h

2
f ′′(βi),

pour un certain βi ∈]xi−1, xi[. Les valeurs des paramètres dans (5) sont
m = 0, α0 = 1, m′ = 1 et β−1 = 0, β0 = 1, β1 = −1.

1.2.4. Approximation de dérivées d’ordres supérieurs. Des schémas d’ordre
élevé, ou encore des approximations par différences finies de dérivées de f
d’ordre supérieur, peuvent être construits en augmentant l’ordre des développe-
ments de Taylor. Voici un exemple concernant l’approximation de f ′′. Si
f ∈ C4([a, b]), on obtient

f ′′(xi) =
f(xi+1)− 2f(xi) + f(xi−1)

h2
− h2

24

(
f (4)(xi + θih) + f (4)(xi − ωih)

)
,

où 0 < θi, ωi < 1, d’où on déduit le schéma aux différences finies centrées

u′′i =
f(xi+1)− 2f(xi) + f(xi−1)

h2
, ∀i ∈ {1, . . . , n− 1}. (6)

L’erreur correspondante est

f ′′(xi)− u′′i = −h2

24

(
f (4)(xi + θih) + f (4)(xi − ωih)

)
.

La formule (6) fournit donc une approximation de f ′′(xi) du second ordre
par rapport à h.

1.2.5. Différences finies compactes. Pour abréger on note f
(k)
i = f (k)(xi) et

fi := f(xi). Des approximations plus précises de f ′ sont données par les
formules suivantes

Definition 1.6 (Différences finies compactes). On définit u′i via les équations

αu′i−1 + u′i + αu′i+1 =
β

2h

(
fi+1 − fi−1

)
+

γ

4h

(
fi+2 − fi−2

)
, (7)

où i ∈ {2, . . . , n− 2}.

Les coefficients α, β et γ doivent être déterminés de manière à ce que les
relations (7) conduisent à des valeurs de ui qui approchent f ′(xi) à l’ordre
le plus élevé par rapport à h. Pour cela, on choisit des coefficients qui
minimisent l’erreur de consistance

σi := αf ′
i−1 + f ′

i + αf ′
i+1 −

[
β

2h
(fi+1 − fi−1) +

γ

4h
(fi+2 − fi−2)

]
. (8)
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Nous pouvons donner une définition non rigoureuse mais générale des
erreurs de consistance.

Definition 1.7 (Erreur de consistance). L’erreur de consistance d’un schéma
consiste à considérer le schéma, à y remplacer la grandeur approximée par
la grandeur exacte, et à regarder l’erreur qui y est faite.

Definition 1.8 (Erreur de convergence). L’erreur de convergence est l’erreur
entre une quantité exacte et son approximation.

On considère une norme ||·|| sur RN+1 quelconque.

Lemma 1.9 (Consistance implique convergence). Considérons un schéma
de différences finies compactes pour approcher f ′, écrit sous forme matricielle

Au′ = BF,

où

u′ := (u′i)
N
i=0, F ′ :=

(
f ′(xi)

)N
i=0

, F :=
(
f(xi)

)N
i=0

,

et où on a u′i ≃ f ′(xi). B peut dépendre de h mais pas A, et A est inversible.
Supposons qu’il existe C > 0 et n ∈ N tels que pour tout h > 0 dans un
voisinage de 0, ∣∣∣∣AF ′ −BF

∣∣∣∣ ⩽ Chn,

qui est l’erreur de consistance. Alors l’erreur de convergence est∣∣∣∣u′ − F ′∣∣∣∣ ⩽ C
∣∣∣∣A−1

∣∣∣∣hn.
Démonstration. On a Au′ = BF et on définit l’erreur de consistance σ =
(σi)

N
i=0 par σ := AF ′ − BF . En soustrayant ces deux relations, on obtient

A(u′ − F ′) = −σ et donc u′ − F ′ = −A−1σ. □

Autrement dit, l’ordre de convergence global est égal à l’ordre de consis-
tance n. Dans (7) on a N = 3, et A est une matrice ayant 1 sur sa diagonale
et α en-dessous et au-dessus de sa diagonale. Plus explicitement,

A =



1 α 0 · · · 0

α 1 α
. . .

...

0 α 1
. . . 0

...
. . . . . . . . . α

0 · · · 0 α 1

 ∈ R(N+1)×(N+1)

B =
1

h



0 β
2 0 −γ

4 · · · 0

−β
2 0 β

2 0 −γ
4

...

0 −β
2 0 β

2 0
. . .

...
. . . . . . . . . . . .

...
...

. . . 0 −β
2 0 β

2

0 · · · γ
4 0 −β

2 0


∈ R(N+1)×(N+1).
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Lemma 1.10 (Ordre 6 des différences finies compactes). Dans le cas de (7),
il existe un unique schéma d’ordre 6 et il correspond aux paramètres

α =
1

3
, β =

14

9
, γ =

1

9
. (9)

Démonstration. En supposant que f ∈ C5([a, b]) et en écrivant le développe-
ment de Taylor en xi, on trouve

fi±1 = fi ± hf ′
i +

h2

2
f
(2)
i ± h3

6
f
(3)
i +

h4

24
f
(4)
i ± h5

120
f
(5)
i +

h6

6!
f
(6)
i +O(h7),

fi±2 = fi ± 2hf ′
i + 2h2f

(2)
i ± 4

3
h3f

(3)
i +

2

3
h4f

(4)
i ± 4

15
h5f

(5)
i +

26h6

6!
f
(6)
i +O(h7),

f ′
i±1 = f ′

i ± hf
(2)
i +

h2

2
f
(3)
i ± h3

6
f
(4)
i +

h4

24
f
(5)
i ± h5

120
f
(5)
i +O(h6).

Ainsi

αf ′
i−1 + f ′

i + αf ′
i+1 = (2α+ 1)f ′

i + αh2f
(3)
i + α

h4

12
f
(5)
i +O(h6).

On calcule ensuite

fi+1 − fi−1 = 2hf ′
i +

h3

3
f
(3)
i +

h5

60
f
(5)
i +O(h7),

et

fi+2 − fi−2 = 4hf ′
i +

8

3
h3f

(3)
i +

8

15
h5f

(5)
i +O(h7).

Par conséquent, le second membre vaut

β

2h

(
fi+1 − fi−1

)
+

γ

4h

(
fi+2 − fi−2

)
= (β + γ)f ′

i +
(β
6
+

2γ

3

)
h2f

(3)
i +

( β

120
+

2γ

15

)
h4f

(5)
i +O(h6).

Par substitution dans (8), on obtient

σi = (2α+ 1)f ′
i + α

h2

2
f
(3)
i + α

h4

12
f
(5)
i − (β + γ)f ′

i

− h2

2

(
β

6
+

2γ

3

)
f
(3)
i − h4

60

(
β

2
+ 8γ

)
f
(5)
i +O(h6).

On construit des schémas du second ordre en annulant le coefficient de f ′
i ,

c’est-à-dire en imposant

2α+ 1 = β + γ,

des schémas d’ordre 4 en annulant aussi le coefficient de f
(3)
i ,

6α = β + 4γ,

et des schémas d’ordre 6 en annulant aussi le coefficient de f
(5)
i ,

10α = β + 16γ.

Le système linéaire formé par ces trois dernières relations est non singulier
et a une unique solution (9).

Par le Lemme 1.9, l’erreur de convergence est la même que l’erreur de
consistance. □
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Il y a une seule méthode d’ordre 6 mais il existe en revanche une infinité
de méthodes du second et du quatrième ordre. Parmi celles-ci, citons un
schéma très utilisé qui correspond aux coefficients

α =
1

4
, β =

3

2
, γ = 0.

Des schémas d’ordre plus élevé peuvent être construits au prix d’un accroisse-
ment supplémentaire du stencil.

1.2.6. Conditions de bord. Les schémas aux différences finies traditionnels
correspondent au choix α = 0 et permettent de calculer de manière explicite
l’approximation de la dérivée première de f en un nœud, contrairement aux
schémas compacts qui nécessitent dans tous les cas la résolution d’un système
linéaire de la forme Au = BF .

Pour pouvoir résoudre le système, il est nécessaire de se donner les valeurs
des variables ui pour i < 0 et i > n. On est dans une situation simple quand
f est une fonction périodique de période b− a, auquel cas

ui+n = ui ∀i ∈ Z.

Dans le cas non périodique, le système (7) doit être complété par des
relations aux nœuds voisins des extrémités de l’intervalle d’approximation.
Par exemple, la dérivée première en x0 peut être calculée en utilisant la
relation

u′0 + αu′1 =
1

h

(
Af1 +Bf2 + Cf3 +Df4

)
,

et en imposant

A =
−3 + α+ 2D

2
, B = 2 + 3D, C =

−1− α+ 6D

2
,

afin que le schéma soit au moins précis à l’ordre deux. Dans ce document,
nous essaierons le plus possible d’éviter les problématiques liées aux condi-
tions de bord.

2. Résolution numérique
des équations différentielles ordinaires

2.1. Le problème de Cauchy. Soit d ∈ N, I désigne un intervalle de R,
t0 ∈ I, le problème de Cauchy associé à une EDO du premier ordre s’écrit
de la manière suivante. Il faut trouver une fonction réelle y ∈ C1(I,Rd) telle
que {

y′(t) = f(t, y(t)) si t ∈ I
y(t0) = y0

(10)

où f : I × Rd → Rd est continue par rapport aux deux variables. Si f ne
dépend pas explicitement de t, l’équation différentielle est dite autonome.
Le cas scalaire correspond à d = 1.
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2.1.1. Forme intégrale. En intégrant (10) entre t0 et t, on obtient

y(t)− y0 =

∫ t

t0

f(τ, y(τ)) dτ. (11)

La solution de (10) est donc nécessairement de classe C1 sur I et satisfait
l’équation intégrale (11). Inversement, si y est définie par (11), alors elle est
continue sur I et y(t0) = y0. De plus, en tant que primitive de la fonction
continue f(·, y(·)), on a y ∈ C1(I) et elle satisfait l’équation différentielle :

y′(t) = f(t, y(t)).

Ainsi, si f est continue, le problème de Cauchy (10) est équivalent à
l’équation intégrale (11). Nous verrons plus loin comment tirer parti de
cette équivalence pour les méthodes numériques.

2.1.2. Existence locale et unicité. Rappelons maintenant deux résultats d’existence
et d’unicité pour (10). On supposera f : I × Rd → Rd localement lipschitzi-
enne en (t0, y0) par rapport à y, ce qui signifie qu’il existe une boule ouverte
J ⊆ I centrée en t0 de rayon rJ , une boule ouverte Σ centrée en y0 de rayon
rΣ et une constante L > 0 telles que :

|f(t, y1)− f(t, y2)| ⩽ L|y1 − y2| ∀t ∈ J, ∀y1, y2 ∈ Σ.

Cette condition est automatiquement vérifiée si la dérivée de f par rapport
à y est continue. En effet, dans ce cas, il suffit de prendre

L = max
(t,y)∈J×Σ

|∂yf(t, y)| .

Lemma 2.1 (Rappel sur l’existence de la solution locale). Soit f : I×Rd →
Rd localement lipschitzienne en (t0, y0) par rapport à y. Alors le problème
de Cauchy (10) admet une unique solution dans une boule ouverte de centre
t0 et de rayon r0 > 0.

Cette solution est appelée solution locale.

2.1.3. Existence globale et unicité.

Lemma 2.2 (Rappel sur l’existence d’une solution globale). Le problème de
Cauchy admet une solution globale unique si f est uniformément lipschitzi-
enne par rapport à y, c’est-à-dire si on peut prendre J = I, Σ = R.

2.1.4. Stabilité sous perturbation. En vue de l’analyse de stabilité du prob-
lème de Cauchy, on considère le problème suivant :{

ż(t) = f(t, z(t)) + δ(t), t ∈ I,
z(t0) = y0 + δ0,

(12)

où δ0 ∈ R et où δ est une fonction continue sur I. Le problème (12) est
déduit de (10) en perturbant la donnée initiale y0 par δ0 et la fonction f par
δ. Caractérisons à présent la sensibilité de la solution z par rapport à ces
perturbations. Intuitivement, la stabilité correspond au fait que si l’EDO est
perturbée, alors la solution change d’une manière “continue”.
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Definition 2.3 (Problème de Cauchy stable). Soit I un ensemble borné.
Le problème de Cauchy (10) est dit stable sur I si, pour toute perturbation
(δ0, δ(t)) satisfaisant

|δ0| ⩽ ε, |δ(t)| ⩽ ε ∀t ∈ I,

avec ε > 0 assez petit pour garantir l’existence de la solution du problème
perturbé (12), alors

∃C > 0 tel que |y(t)− z(t)| ⩽ Cε ∀t ∈ I. (13)

La constante C dépend en général de t0, y et f , mais pas de ε.
Quand I n’est pas borné supérieurement, on dit que (10) est asymptotique-

ment stable si, en plus de (13), on a

|δ(t)| −→
t→+∞

0 =⇒ |y(t)− z(t)| −→
t→+∞

0.

2.1.5. Grönwall. Rappelons le lemme de Grönwall pour le problème de Cauchy.

Lemma 2.4 (Grönwall). Soit p une fonction positive intégrable sur l’intervalle
]t0, t0 + T [, et soient g et φ deux fonctions continues sur [t0, t0 + T ], avec g
croissante. Si φ satisfait

φ(t) ⩽ g(t) +

∫ t

t0

p(τ)φ(τ) dτ ∀t ∈ [t0, t0 + T ],

alors

φ(t) ⩽ g(t) exp

(∫ t

t0

p(τ) dτ

)
∀t ∈ [t0, t0 + T ].

2.1.6. Utilité du numérique. On ne sait intégrer qu’un très petit nombre
d’EDO non linéaires. De plus, même quand c’est possible, il n’est pas tou-
jours facile d’exprimer explicitement la solution ; considérer par exemple
l’équation très simple :

y′ =
y − t

y + t
,

dont la solution n’est définie que de manière implicite par la relation :
1

2
log(t2 + y2) + arctan

(y
t

)
= C,

où C est une constante dépendant de la condition initiale.
Pour cette raison, nous sommes conduits à considérer des méthodes numériques.

Celles-ci peuvent en effet être appliquées à n’importe quelle EDO, sous la
seule condition qu’elle admette une unique solution.

2.2. Méthodes numériques à un pas. Abordons à présent l’approximation
numérique du problème de Cauchy (10). On fixe 0 < T < +∞ et on note
I =]t0, t0 + T [ l’intervalle d’intégration. Pour h > 0, soit

tn = t0 + nh, n = 0, 1, 2, . . . , Nh,

une suite de nœuds de I induisant une discrétisation de I en sous-intervalles
In := [ tn, tn+1 ].

La longueur h de ces sous-intervalles est appelée pas de discrétisation. Le
nombre Nh est le plus grand entier tel que

tNh
⩽ t0 + T.
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On a donc hNh ≃ T .
Soit uj l’approximation au nœud tj de la solution exacte y(tj) =: yj ,

uj ≃ yj .

De même, fj := f(tj , uj). On pose naturellement

u0 = y0.

Definition 2.5 (Méthode à un pas, méthode multipas). Une méthode numérique
pour l’approximation du problème (10) est dite à un pas si ∀n ⩾ 0, le schéma
définissant un+1 ne dépend que de un. Autrement, on dit que le schéma est
une méthode multi-pas (ou à pas multiples).

Une méthode multipas est par exemple quand un+1 dépend de un et un−1.
Pour l’instant, nous concentrons notre attention sur les méthodes à un pas.
En voici quelques-unes.

Definition 2.6 (Méthode d’Euler explicite).

un+1 = un + hf(tn, un).

Definition 2.7 (Méthode d’Euler implicite).

un+1 = un + hf(tn+1, un+1).

Dans les deux cas, y′ est approchée par un schéma aux différences finies
(resp. progressif puis rétrograde). Puisque ces deux schémas sont des ap-
proximations au premier ordre par rapport à h de la dérivée première de y,
on s’attend à obtenir une approximation d’autant plus précise que le pas du
maillage h est petit.

Definition 2.8 (Méthode du trapèze, ou de Crank–Nicolson).

un+1 = un +
h

2
(f(tn, un) + f(tn+1, un+1)).

Cette méthode provient de l’approximation de l’intégrale (11) par la for-
mule de quadrature du trapèze.

Definition 2.9 (Méthode de Heun).

un+1 = un +
h

2
(f(tn, un) + f(tn+1, un + hfn)) .

Definition 2.10 (Méthode explicite, implicite). Une méthode est dite ex-
plicite si la valeur un+1 peut être calculée directement à l’aide des valeurs
précédentes (uk)k⩽n (ou d’une partie d’entre elles). Une méthode est dite
implicite si un+1 n’est défini que par une relation implicite faisant intervenir
la fonction f .

Ainsi, la substitution opérée dans la méthode de Heun a pour effet de
transformer la méthode implicite du trapèze en une méthode explicite. La
méthode d’Euler explicite est explicite, tandis que celle d’Euler implicite
est implicite. Noter que les méthodes implicites nécessitent à chaque pas de
temps la résolution d’un problème non linéaire (si f dépend non linéairement
de la seconde variable).

Pour les méthodes implicites, il faut à chaque itération résoudre un prob-
lème consistant à trouver le zéro d’une fonction. Pour Euler implicite, afin de
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déterminer un+1 à partir de un et tn+1 (auxquels on a accès), il faut résoudre
l’équation

F (x) = 0,

où F (x) := x − un − hf(tn+1, x). On trouve donc le nombre x = un+1,
comme solution.

2.3. Analyse des méthodes.

2.3.1. Convergence. Comme en Définition 1.7, la consistance mesure à quel
point le schéma numérique reproduit l’équation originale quand le pas tend
vers 0. Par ailleurs, la convergence dit quelque chose au niveau de la solution.

On rappelle que le max est une norme

||(un)0⩽n⩽j ||ℓ∞ := max
n∈{0,...,j}

|un| .

Definition 2.11 (Méthode convergente et ordre de convergence). Une méth-
ode est dite convergente si

max
0⩽n⩽N

|un − yn| ⩽ C(h)

où C(h) −→
h→0

0. On dit que l’ordre de convergence est p > 0 s’il existe c > 0

tel que C(h) = chp.

2.3.2. Grönwall discret.

Lemma 2.12 (Grönwall discret). Soit (kn)n∈N et (An)n∈N des suites de réels
positifs et (ϕn)n∈N une suite telle que pour tout n ∈ N,

ϕn ⩽ An +
n−1∑
s=0

ksϕs,

Si (An) est croissante pour tout n ⩾ 0, alors pour tout n ∈ N,

ϕn ⩽ An exp

(
n−1∑
s=0

ks

)
.

Démonstration. L’idée de la preuve est d’éliminer les termes récurrents de
type ϕs dans la somme, en les remplaçant par leur majorant inductif. Nous
allons montrer par récurrence sur n que

ϕn ⩽ An exp

(
n−1∑
s=0

ks

)
.

• Initialisation. On a ϕ0 ⩽ A0, et comme
∑−1

s=0 ks = 0, alors

ϕ0 ⩽ A0 = A0e
0 = A0 exp

( −1∑
s=0

ks

)
.

• Hérédité. Supposons le résultat vrai pour tout s < n, c’est-à-dire

ϕs ⩽ As exp

(
s−1∑
i=0

ki

)
, ∀s < n.
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En partant de l’inégalité fondamentale,

ϕn ⩽ An +

n−1∑
s=0

ksϕs,

nous remplaçons chaque ϕs dans la somme par sa borne inductive :

ϕn ⩽ An +
n−1∑
s=0

ksAs exp

(
s−1∑
i=0

ki

)
⩽

As croissante
An

(
1 +

n−1∑
s=0

ks exp

(
s−1∑
i=0

ki

))
.

On reconnaît maintenant la forme discrète de l’intégrale exponentielle.

Lemma 2.13. Nous voulons montrer que, si ks ⩾ 0 pour tout s, alors

1 +

n−1∑
s=0

ks exp

(
s−1∑
i=0

ki

)
⩽ exp

(
n−1∑
s=0

ks

)
. (14)

Démonstration. Pour cela, on introduit les notations S0 := 0,

Ss :=
s−1∑
i=0

ki, s ⩾ 0, Bn := 1 +
n−1∑
s=0

kse
Ss , n ⩾ 0.

L’inégalité (14) s’écrit donc simplement Bn ⩽ eSn . Nous allons le prouver
par récurrence sur n.

Pour n = 0, on a B0 = 1, S0 = 0, donc B0 = 1 = eS0 .
Supposons que, pour un certain n ⩾ 0, on ait Bn ⩽ eSn . Nous allons

montrer que cela implique Bn+1 ⩽ eSn+1 . Par définition de Bn+1, on a

Bn+1 = Bn + kne
Sn ⩽ eSn + kne

Sn = (1 + kn) e
Sn ⩽

1+x⩽ex
ekn+Sn = eSn+1 .

□

Nous obtenons donc finalement

ϕn ⩽ An exp

(
n−1∑
s=0

ks

)
,

ce qui conclut l’hérédité et prouve le Lemme 2.12. □

Corollary 2.14. Soit (an) une suite positive. Si pour tout n ∈ {0, . . . , Nh},

an+1 ⩽ (1 + ch)an + Chp+1,

alors an ⩽ (a0 + CThp) ecT .

Le lemme de Grönwall n’est pas nécessaire dans ce cas mais on va l’utiliser.

Démonstration. On a

an+1 − an ⩽ ch an + Chp+1.

En sommant cette inégalité de n = 0 à n = m − 1 (avec m ⩾ 1 arbitraire),
on obtient

am − a0 =
m−1∑
n=0

(
an+1 − an

)
⩽

m−1∑
s=0

(
ch as + Chp+1

)
= ch

m−1∑
s=0

as + Chp+1m.
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On passe a0 à droite et en utilisant le lemme de Grönwall discret, on obtient

am ⩽
(
a0 + Chp+1m

)
ecmh ⩽ (a0 + CThp) ecT .

□

2.3.3. Consistance implique convergence. Considérons un schéma du type

un+1 = Φ
(
tn, un, h

)
. (15)

On constate que ces schémas sont explicites. Par exemple, Euler explicite et
la méthode de Heun se mettent sous cette forme, on a

• Φ
(
t, y, h

)
= y + hf(t, y) pour Euler explicite

• pour la méthode de Heun,

Φ(t, y, h) = y +
h

2

(
f(t, y) + f

(
t+ h, y + hf(t, y)

))
.

On définit l’erreur de troncature locale

τn+1 := yn+1 − Φ (tn, yn, h) .

Definition 2.15 (Consistance d’un schéma). Une méthode est dite consis-
tante si

max
0⩽n⩽Nh−1

|τn| −→
h→0

0.

Proposition 2.16. Prenons un schéma du type (15). Supposons que

|Φ(t, y, h)− Φ(t, z, h)| ⩽ (1 + Ch)|y − z|.

Si |τn| ⩽ Chp+1 pour un C > 0 indépendant de h et de n (i.e. si la méthode
est consistante d’ordre p + 1), alors la méthode est convergente d’ordre p,
c’est-à-dire

||un − yn|| ⩽ chp

pour un c > 0 indépendant de h et de n.

Démonstration. On considère l’erreur en := un − yn. On a

en+1 = Φ(tn, un, h)− Φ(tn, yn, h)− τn+1,

donc

|en+1| ⩽ (1 + Ch)|en|+ Chp+1.

On termine en appliquant le Corollaire 2.14. □

2.3.4. Méthode d’Euler explicite.

Theorem 2.17 (Ordre de la méthode d’Euler explicite). Supposons que f
est Lipschitzienne en sa seconde variable. La méthode d’Euler explicite est
convergente d’ordre 1, c’est-à-dire que

max
0⩽n⩽Nh

|un − yn| ⩽ Ch.
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Démonstration. On utilise la formule de Taylor sur y(t) autour de tn, via
Taylor-Lagrange

yn+1 = y(tn + h) = yn + hy′(tn) +
h2

2
y′′(βn),

pour un certain βn ∈]tn, tn+1[. Mais comme y′(t) = f(t, y(t)), cela donne

yn+1 = yn + hf(tn, yn) +
h2

2
y′′(βn).

L’erreur de consistance est

σn+1 := yn+1 − Φ (tn, yn, h) =
h2

2
y′′(βn).

Sous l’hypothèse que y′′ est bornée sur [0, T ], il existe M > 0 tel que
|y′′(t)| ⩽ M , et ainsi, pour tout n,

|σn+1| ⩽
M

2
h2 =: C0h

2,

et on voit que la méthode est consistante.
De plus, f est L-Lipschitzienne par rapport à sa seconde variable, donc

|Φ(t, y, h)− Φ(t, z, h)| ⩽ (1 + Lh) |y − z| .
On termine en appliquant la Proposition 2.16. □

2.3.5. Méthode de Heun.

Theorem 2.18 (Ordre de la méthode de Heun). Supposons que f est Lip-
schitzienne en sa seconde variable. La méthode de Heun est convergente
d’ordre 2, c’est-à-dire que

max
0⩽n⩽Nh

|un − yn| ⩽ Ch2.

Démonstration. On a

y′(tn) = f(tn, yn), y′′(tn) =
∂f

∂t
(tn, yn) +

∂f

∂y
(tn, yn) f(tn, yn).

Développons

yn+1 = y(tn + h) = yn + h y′(tn) +
h2

2
y′′(tn) +O(h3)

= yn + hf(tn, yn) +
h2

2

(
∂f

∂t
(tn, yn) +

∂f

∂y
(tn, yn)f(tn, yn)

)
+O(h3).

Développons maintenant

f
(
tn + h, yn + hf(tn, yn)

)
= f(tn, yn) + h

∂f

∂t
(tn, yn) + h

∂f

∂y
(tn, yn) f(tn, yn) +O(h2).

On en déduit

Φ(tn, yn, h) = yn +
h

2

(
f(tn, yn) + f

(
tn + h, yn + hf(tn, yn)

))
= yn + hf(tn, yn) +

h2

2

(
∂f

∂t
(tn, yn) +

∂f

∂y
(tn, yn)f(tn, yn)

)
+O(h3).
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On a donc

σn+1 = yn+1 − Φ(tn, yn, h) = O(h3).

Par ailleurs,

Φ(t, y, h)− Φ(t, z, h) = y − z +
h

2
(f(t, y)− f(t, z))

+
h

2
(f (t+ h, y + hf(t, y))− f (t+ h, z + hf(t, z)))

et

|f (t+ h, y + hf(t, y))− f (t+ h, z + hf(t, z))|
⩽ L |y + hf(t, y)− (z + hf(t, z))| ⩽ L (|y − z|+ h |f(t, y)− f(t, z)|)
⩽ L(1 + Lh) |y − z| .

Enfin, en supposant que h ⩽ 1,

|Φ(t, y, h)− Φ(t, z, h)| ⩽ (1 + Lh (1 + Lh/2)) |y − z|
⩽ (1 + Lh (1 + L/2)) |y − z|.

On termine en appliquant la Proposition 2.16. □

2.3.6. Milne-Simpson. Le schéma de Milne-Simpson est défini par

ui+1 = ui−1 +
h

3

(
f(ti−1, ui−1) + 4f(ti, ui) + f(ti+1, ui+1)

)
.

Exercice 2.19. Écrire l’erreur de consistance en utilisant y la solution ex-
acte de y′(t) = f(t, y(t)). Montrer que l’erreur de consistance de Milne-
Simpson est d’ordre 4. Quel est l’ordre de convergence ?

2.4. Méthode d’Euler implicite.

Theorem 2.20 (Ordre de la méthode d’Euler implicite). On suppose que
f est L-Lipschitzienne en sa seconde variable. Pour h < 1/L, la méthode
d’Euler implicite est convergente d’ordre 1.

Démonstration. On définit d’abord l’erreur de consistance

σn+1 := yn+1 −
(
yn + hf(tn+1, yn+1)

)
.

Un développement de Taylor de y autour de tn+1 donne

yn = yn+1 − hy′(tn+1) +
h2

2
y′′(βn+1),

d’où

σn+1 = −h2

2
y′′(βn+1), |σn+1| ⩽ Ch2.

On introduit l’erreur en := un − yn. En soustrayant l’identité vérifiée par
y et le schéma numérique, on obtient :

en+1 = en + h
(
f(tn+1, un+1)− f(tn+1, yn+1)

)
− σn+1.

Par hypothèse que f est L-Lipschitz,

|en+1| ⩽ |en|+ hL |en+1|+ |σn+1|,
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donc

(1− hL)|en+1| ⩽ |en|+ |σn+1|.
Pour h assez petit tel que 1− hL > 0, on obtient

|en+1| ⩽
1

1− hL

(
|en|+ |σn+1|

)
⩽ (1 + C1h)|en|+ C2h

2,

avec des constantes C1, C2 indépendantes de h. On termine en appliquant
le Corollaire 2.14. □

Proposition 2.21 (Ordre de la méthode de Crank–Nicolson). Supposons
que f ∈ C2. La méthode de Crank–Nicolson est convergente d’ordre 2.

Démonstration. • On commence par prouver la consistance. On définit
l’erreur de consistance

σn+1 := yn+1 −
(
yn +

h

2

(
f(tn, yn) + f(tn+1, yn+1)

))
,

et on veut connaître son comportement quand h est petit.
On part de la formulation intégrale de l’EDO,

yn+1 = yn +

∫ tn+1

tn

f
(
s, y(s)

)
ds.

La formule du trapèze appliquée à l’intégrale donne en fait l’erreur de con-
sistance∫ tn+1

tn

f
(
s, y(s)

)
ds =

h

2

(
f
(
tn, yn

)
+ f

(
tn+1, yn+1

))
+ σn+1,

et on veut connaître l’ordre de σn+1 en h. On pose

g(s) := f
(
s, y(s)

)
.

On a g ∈ C2 sur l’intervalle considéré. On rappelle que tn+1 = tn + h. On a

σn+1 =

∫ tn+1

tn

g(s)ds− h

2

(
g(tn) + g(tn+1)

)
. (16)

Pour tout s ∈ [tn, tn+1], il existe βs ∈ [tn, tn+1] tel que

g(s) = g(tn) + (s− tn)g
′(tn) +

(s− tn)
2

2
g′′(βs).

On intègre de tn à tn+1, en posant ν = s− tn, on obtient∫ tn+1

tn

g(s) ds =

∫ h

0

[
g(tn) + νg′(tn) +

ν2

2
g′′(βtn+ν)

]
dν

= h g(tn) +
h2

2
g′(tn) +

1

2

∫ h

0
ν2g′′(βtn+ν) dν.

On applique Taylor-Lagrange en tn, il existe ηn ∈ [tn, tn+1] tel que

g(tn+1) = g(tn) + hg′(tn) +
h2

2
g′′(ηn),

et alors
h

2

(
g(tn) + g(tn+1)

)
= h g(tn) +

h2

2
g′(tn) +

h3

4
g′′(ηn).
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En reformant (16) on a

σn+1 =
1

2

∫ h

0
τ2g′′(βtn+τ ) dτ − h3

4
g′′(ηn).

Or, g′′ est bornée sur [0, T ], donc
∣∣g′′(s)∣∣ ⩽ M pour tout s ∈ [0, T ]. Alors∣∣∣∣12

∫ h

0
τ2g′′(βtn+τ ) dτ

∣∣∣∣ ⩽ 1

2
M

∫ h

0
τ2 dτ =

Mh3

6
,

et M est indépendant de T et de n. On en déduit qu’il existe une constante
CT > 0, indépendante de h et de n, telle que

|τn+1| ⩽ Ch3.

• Prouvons maintenant la convergence. On introduit l’erreur en := un −
yn. En soustrayant l’identité vérifiée par y et le schéma numérique, on obtient

en+1 = en +
h

2

(
f(tn, un)− f(tn, yn) + f(tn+1, un+1)− f(tn+1, yn+1)

)
− τn+1.

Par hypothèse que f est L-Lipschitz,

|en+1| ⩽ |en|
(
1 +

h

2
L

)
+

h

2
L|en+1|+ |τn+1|.

et (
1− h

2
L

)
|en+1| ⩽ |en|

(
1 +

h

2
L

)
+ |τn+1|.

Pour h < 2/L, on a

|en+1| ⩽ |en|
1 + h

2L

1− h
2L

+ |τn+1| ⩽ |en| (1 + C1h) + Ch3,

on termine en utilisant Grönwall discret de la même manière que pour la
méthode d’Euler implicite. □

2.5. Stabilité.

2.5.1. Définition. Les erreurs viennent de plusieurs sources
• erreur d’arrondi données par la précision machine, qui n’est pas

strictement nulle
• erreur sur la donnée initiale
• erreurs de troncature du fait du pas fini

Un schéma numérique est stable si ces pertubations ne produisent pas une
divergence de la solution numérique à temps long.

Definition 2.22 (Stabilité). Une méthode numérique est dite absolument
stable si, à pas h fixé,

|un| −→
tn→+∞

0. (17)

Une méthode numérique est dite stable si pour tout T > 0 il existe CT tel
que pour tout n ∈ {0, . . . , Nh},

|un| ⩽ CT |u0| , (18)

où CT est indépendant de n et de u0.

Dans (17), on remarque que tn → +∞ est équivalent à n → +∞.
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2.5.2. Stabilité pour y′ = λy. On va appliquer cette notion au problème de
Cauchy {

y′(t) = λy(t), t > 0
y(0) = 1,

(19)

où λ ∈ C. On sait que la solution exacte est y(t) = eλt et que y(t) −→
t→+∞

0

si et seulement si Reλ < 0. Et dans ce cas, le problème est stable au sens
de la Définition 2.3.

Proposition 2.23. On considère le cas (19) où λ ∈ C, et h > 0. On a que
• Euler explicite est absolument stable si et seulement si

Reλ < 0, et h < −2Reλ

|λ|2
. (20)

• Euler implicite est absolument stable si et seulement si

Reλ < 0.

• la méthode du trapèze est absolument stable si et seulement si

Reλ < 0.

• pour λ ∈ R, la méthode de Heun est absolument stable si et seulement
si

λ < 0, h < − 2

λ
.

Pour λ ∈ R, les régions de stabilité d’Euler explicite et de Heun sont les
mêmes. On voit qu’il semble falloir ajouter des conditions pour la stabilité
des schémas explicites, alors qu’il y a besoin de moins de conditions pour la
stabilité des schémas implicites.

Démonstration. Le schéma d’Euler explicite s’écrit

un+1 = un + hλun = (1 + hλ)un.

La solution numérique est donc

un = (1 + hλ)nu0,

On définit z := hλ, le facteur d’amplification est R(z) = 1+ z. La condition
de stabilité est donc |R(z)| < 1. Or, en passant au carré, on calcule

|R(z)| = 1 + 2hReλ+ h2 |λ|2

et on voit que la condition est équivalente à

h
(
h |λ|2 + 2Reλ

)
< 0,

ce qui est équivalent à (20).
Pour le schéma implicite

un+1 = un + hλun+1, donc un+1 =
1

1− hλ
un

et la solution numérique est

un =

(
1

1− hλ

)n

u0.
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Le facteur d’amplification est R(z) = 1
1−z , la condition de stabilité s’écrit

|R(z)| < 1. Comme précédemment, on calcule que |R(hλ)| < 1 si et seule-
ment si h > 2Reλ

|λ|2 . La méthode d’Euler implicite est ainsi absolument stable
pour tout h > 0 dès que Reλ < 0.

Pour la méthode du trapèze,

un+1 = un +
h

2

(
f(tn, un) + f(tn+1, un+1)

)
= un +

hλ

2

(
un + un+1

)
.

On obtient ainsi(
1− λh

2

)
un+1 =

(
1 +

λh

2

)
un, un+1 =

1 + λh
2

1− λh
2

un.

et

un =

(
1 + λh

2

1− λh
2

)n

u0.

Le facteur d’amplification est

R(z) =
1 + z

2

1− z
2

,

et on calcule que |R(λh)| < 1 si et seulement si Reλ < 0.
Pour la méthode de Heun,

un+1 = un +
h

2

(
2λun + hλ2un

)
= un + hλun +

h2λ2

2
un

=
(
1 + hλ+ 1

2(hλ)
2
)
un.

La solution numérique peut donc s’écrire

un = R(hλ)nu0.

où le facteur d’amplification est R(z) = 1 + z + z2

2 . Dans le cas où λ ∈ R,
on a que |R(λh)| < 1 si et seulement si

−1 < 1 + hλ+
(hλ)2

2
< 1

ce qui est équivalent à

−4 < h2λ2 + 2hλ < 0,

il faut résoudre deux inégalités quadratiques. L’inégalité de droite est vérifiée
si et seulement si h < − 2

λ et l’inégalité de gauche est toujours vérifiée. □

2.6. Méthode de Runge-Kutta. Le but est d’introduire une classe de
méthodes plus précises que les méthodes d’Euler explicite et implicite, à un
ordre plus élevé.

Le principe est alors de construire des valeurs approchées uk au temps tn
pour chaque 0 ≤ n ≤ Nh suivant le schéma à un pas

u0 = y0, et un+1 = Φ(tn, un, h),
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dans lequel la fonction Φ caractérise la méthode considérée. Pour la méthode
d’Euler explicite, cette fonction est donnée par Φ(t, y, h) = y + hf(t, y). La
méthode de Runge-Kutta d’ordre deux est définie par

Φ(t, y, h) = y + hf
(
t+ h

2 , y +
h
2f(y, t)

)
,

tandis que la méthode de Runge-Kutta d’ordre quatre est donnée par

Φ(t, y, h) =
h

6

(
n1 + 2n2 + 2n3 + n4

)
,

où

n1 = f(y, t),

n2 = f
(
t+ h

2 , y +
h
2n1

)
,

n3 = f
(
t+ h

2 , y +
h
2n2

)
,

n4 = f(t+ h, y + hn3).

Plus généralement, une méthode de Runge-Kutta d’ordre s est donnée par
les formules

Φ(t, y, h) = h
s∑

i=1

bini,

où

n1 = f(t, y),

n2 = f(t+ c2h, y + ha21n1),

n3 = f(t+ c3h, y + h(a31n1 + a32n2)),

. . . = . . . ,

ns = f(t+ csh, y + h(as1n1 + as2n2 + . . .+ as,s−1ns−1)).

Les coefficients (aij)1≤j<i≤s, (ci)2≤i≤s, et (bi)1≤i≤s sont souvent représentés
par un tableau dit de Butcher

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

Par exemple, le tableau de Butcher des méthodes d’ordre 2 est

0
1
2

1
2
0 1

et celui d’ordre 4 est
0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6
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De plus, la méthode de Heun est une méthode de Runge-Kutta avec
tableau

0
1 1

1
2

1
2

3. Approximation numérique
d’équations aux dérivées partielles

3.1. Schéma θ pour l’équation de la chaleur.

3.1.1. Présentation. On étudie l’équation de la chaleur unidimensionnelle
sur R+ × [0, 1]. Elle s’écrit, pour un paramètre ν > 0 appelé coefficient de
diffusion,

∂y

∂t
− ν

∂2y

∂x2
= 0, y(·, 0) = y(·, 1) = 0, y(0, x) =

∀x∈[0,1]
y0(x). (21)

On suppose connue l’existence de la solution classique et on peut montrer
qu’elle est C∞. Notre but est d’approcher numériquement la solution avec
un schéma aux différences finies appelé θ-schéma.

On se donne une discrétisation en temps

tn = n∆t, n ∈ N

et en espace

xj = j∆x, j ∈ {0, . . . , J + 1}, ∆x =
1

J + 1

On note y la solution exacte de (21), on définit ynj := y(tn, xj), et on note

unj ≃ y(tn, xj)

une approximation de ynj . On aura donc les conditions de bord

un0 = unJ+1 = 0.

On note un := (unj )1⩽j⩽J ∈ RJ le vecteur contenant toute l’approximation
pour un temps donné.

3.1.2. Définition du θ-schéma. Pour θ ∈ [0, 1], on définit

un+1
j − unj

∆t
= νθ

un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
+ ν(1− θ)

unj+1 − 2unj + unj−1

(∆x)2
. (22)

On voit que
• le cas θ = 0 est un schéma explicite, à partir de un on peut calculer
un+1,

• les cas θ ∈]0, 1] sont des schémas implicites,
• le cas θ = 1 correspond à Euler implicite,
• le cas θ = 1

2 est le cas Crank-Nicolson pour la discrétisation tem-
porelle.

Definition 3.1 (Stencil). Le stencil pour (n, j) est l’ensemble des (m, k)
qu’il faut connaître pour pouvoir calculer unj .
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On rappelle la définition de la norme euclidienne ℓ2 dans Rn,

||v||ℓ2 :=

√√√√ n∑
j=1

|vj |2.

Theorem 3.2. Soit T > 0, on considère l’équation différentielle sur t ∈
[0, T ] et n ∈ {0, . . . , N} où N∆t ⩽ T ⩽ (N + 1)∆t. Pour la norme ℓ2, le
θ-schéma est convergent

• si θ ⩾ 1
2 ,

• si θ < 1
2 sous la condition CFL

(1− 2θ)
2ν∆t

(∆x)2
⩽ 1. (23)

Il est d’ordre 2 en espace. Il est d’ordre 1 en temps si θ ̸= 1
2 , et d’ordre 2 en

temps si θ = 1
2 . Plus précisément, sous la condition CFL, on a

max
0⩽n⩽N

||un − yn||ℓ2 ⩽ CT (∆x)2 + CT

{
∆t si θ ̸= 1

2
(∆t)2 si θ = 1

2 ,
(24)

où CT ne dépend pas de n ni de ∆t ni de ∆x, mais dépend de T . De plus,
il est stable au sens où pour tout n ⩽ N ,

||un||ℓ2 ⩽ KT

∣∣∣∣u0∣∣∣∣
ℓ2
,

où KT ne dépend pas de n ni de ∆t ni de ∆x ni de u0, mais dépend de T .

3.1.3. Le schéma est bien défini. Définissons

A :=


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 ∈ RJ×J , β :=
ν∆t

(∆x)2
.

Pour tout n, j, on a (Aun)j = unj+1 − 2unj + unj−1. Le schéma (22) se réécrit

(I + θβA)un+1 = (I − (1− θ)βA)un.

Le schéma est bien défini si I+θβA est inversible, car alors un+1 est calculable
par

un+1 = (I + θβA)−1 (I − (1− θ)βA)un.

Montrons que I + θβA est inversible.

Lemma 3.3. Pour p ∈ {1, . . . , J}, le vecteur

V p :=
(
sin
(

jpπ
J+1

))
1⩽j⩽J

est vecteur propre de A pour la valeur propre

λp = 4
(
sin
(

pπ
2(J+1)

))2
. (25)
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Démonstration. Par définition de A,

(AV p)j = 2(V p)j − (V p)j−1 − (V p)j+1

= 2 sin
(

jpπ
J+1

)
− sin

(
(j−1)pπ
J+1

)
− sin

(
(j+1)pπ
J+1

)
.

On utilise que pour tout x ∈ R,

sin((j + 1)x) + sin((j − 1)x) = 2 sin(jx) cos(x).

En prenant x = pπ
J+1 , on obtient

(AV p)j = 2
(
1− cos

(
pπ
J+1

))
sin
(

jpπ
J+1

)
= λp(V

p)j

où λp = 2
(
1− cos

(
pπ
J+1

))
, car 1− cosx = 2

(
sin
(
x
2

))2
. □

Ainsi, en notant σ(B) le spectre de B pour toute matrice B, on a

minσ (I + θβA) = I + θβminσ (A)

= 1 + 4θβ
(
sin
(

π
2(J+1)

))2
⩾ 1 > 0,

donc la matrice est inversible et le schéma bien défini.

3.1.4. Consistance du schéma. On remarque d’abord que

yn+1
j − ynj

∆t
=

∂y

∂t
(tn, xj) +

∆t

2

∂2y

∂t2
(tn, xj) +O((∆t)2).

Puis

ynj+1 − 2ynj + ynj−1

(∆x)2
=

ynj+1 − ynj −
(
ynj − ynj−1

)
(∆x)2

=
1

∆x

(
∂y

∂x
(tn, xj) +

∆x

2

∂2y

∂x2
(tn, xj) +

(∆x)2

3!

∂3y

∂x3
(tn, xj) +O((∆x)3)

)
− 1

∆x

(
∂y

∂x
(tn, xj) +

∆x

2

∂2y

∂x2
(tn, xj)−

(∆x)2

3!

∂3y

∂x3
(tn, xj) +O((∆x)3)

)
=

∂2y

∂x2
(tn, xj) +O((∆x)2).

De même,

yn+1
j+1 − 2yn+1

j + yn+1
j−1

(∆x)2
=

∂2y

∂x2
(tn+1, xj) +O((∆x)2)

=
1

ν

∂y

∂t
(tn+1, xj) +O((∆x)2)

=
1

ν

(
∂y

∂t
(tn, xj) + ∆t

∂2y

∂t2
(tn, xj)

)
+O((∆x)2 + (∆t)2)
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On note yn := (ynj )1⩽j⩽J . En remplaçant tous ces termes dans le schéma,
on obtient l’erreur de consistance en (tn, xj).

σn
j :=

1

∆t

(
(I + θβA) yn+1 − (I − (1− θ)βA) yn

)
j

=
yn+1
j − ynj

∆t
−

(
νθ

yn+1
j+1 − 2yn+1

j + yn+1
j−1

(∆x)2
+ ν(1− θ)

ynj+1 − 2ynj + ynj−1

(∆x)2

)

=
∂y

∂t
(tn, xj) +

∆t

2

∂2y

∂t2
(tn, xj)− θ

∂y

∂t
(tn, xj)− θ∆t

∂2y

∂t2
(tn, xj)

− ν(1− θ)
∂2y

∂x2
(tn, xj) +O((∆x)2 + (∆t)2)

= (1− θ)

(
∂y

∂t
− ν

∂2y

∂x2

)
(tn, xj) + ∆t

(
1
2 − θ

) ∂2y

∂t2
(tn, xj) +O((∆x)2 + (∆t)2)

= ∆t
(
1
2 − θ

) ∂2y

∂t2
(tn, xj) +O((∆x)2 + (∆t)2).

On a ∣∣σn
j

∣∣ = O((∆x)2) +

{
O(∆t) si θ ̸= 1

2
O((∆t)2) si θ = 1

2

et donc

max
0⩽n⩽N

||σn|| = O((∆x)2) +

{
O(∆t) si θ ̸= 1

2
O((∆t)2) si θ = 1

2

(26)

donc le schéma est consistant, d’ordre donné par (26).

3.1.5. Stabilité du schéma. On rappelle que pour toute matrice M sym-
métrique et tout vecteur v, on a

||Mv||ℓ2 ⩽ ||v||ℓ2 max{|λ| | λ ∈ σ(M)}.

On définit

B := (I + θβA)−1 (I − (1− θ)βA) , on a un+1 = Bun.

Comme A est symétrique, pour toute fonction f lisse en les λp, p ∈ {1, . . . , J},
les valeurs propres de f(A) sont les f(λp). En se rappelant la définition (25)
de λp, on a que les J valeurs propres de B sont, pour j ∈ {1, . . . , J},

µp :=
1− (1− θ)βλp

1 + θβλp
, µ := max

1⩽p⩽J
|µp| .

Comme θ ⩾ 0, alors 1+ θβλp ⩾ 1 > 0. La méthode est stable dans la norme
euclidienne ℓ2 si et seulement si

∀p ∈ {1, . . . , J}, |µp| ⩽ 1. (27)

On rappelle la définition de la norme d’opérateur pour ℓ2, pour toute matrice
M ,

||M ||ℓ2→ℓ2 := sup
v∈RJ+1

||Mv||ℓ2
||v||ℓ2

.
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Elle respecte, pour toutes matrices M et P , ||MP ||ℓ2→ℓ2 ⩽ ||M ||ℓ2→ℓ2 ||P ||ℓ2→ℓ2 .
On a toujours un = Bnu0 et donc dans ce cas,

||un||ℓ2 ⩽ ||Bn||ℓ2→ℓ2

∣∣∣∣u0∣∣∣∣ ⩽ ||B||nℓ2→ℓ2

∣∣∣∣u0∣∣∣∣ ,
donc ||un||ℓ2 reste borné si et seulement si ||B||ℓ2→ℓ2 , ce qui est équivalent
à (27). Or, (27) équivaut à

(1 + θβλp)
2 − (1− (1− θ)βλp)

2 ⩾ 0,

On calcule donc

(1 + θβλp)
2 − (1− (1− θ)βλp)

2 = βλp (2− (1− 2θ)βλp) .

Comme βλp ⩾ 0, la stabilité équivaut à 2 ⩾ (1− 2θ)βλp.
Si θ ⩾ 1

2 , alors l’inégalité est toujours vérifiée. Si θ < 1
2 , alors 1− 2θ > 0

et la condition devient

βλp <
2

1− 2θ
.

On a que

max
1⩽p⩽J

λp = 4 sin2
( Jπ

2(J + 1)

)
< 4.

Ainsi, si on a la condition CFL

4β ⩽
2

1− 2θ
,

alors

βλp ⩽
λp

4

2

1− 2θ
<

2

1− 2θ
.

3.1.6. Convergence du schéma. On utilisera pour ça le théorème 3.4.

3.2. Théorème de Lax. Le théorème de Lax montre que
• stabilité (le schéma ne crée pas d’oscillations rapides)
• et consistance (au niveau de l’EDP discrète, l’erreur entre l’application

du schéma à un et yn tend vers 0)
implique convergence.

Theorem 3.4 (Lax : stabilité + consistance =⇒ convergence). Soit y la
solution suffisamment régulière de l’équation de la chaleur (21). Soit unj la
solution numérique discrète obtenue par un schéma de différences finies avec
la donnée initiale u0j = y0(xj). On prend la norme euclidienne ||·||ℓ2. On
suppose que le schéma est

• linéaire à deux niveaux
• consistant d’ordre p en espace et à l’ordre q en temps pour ||·||ℓ2, où

l’erreur de consistance est

σn :=
1

∆t

(
yn+1 −Byn

)
• stable pour ||·||ℓ2.

On définit en := unj −ynj . Alors pour tout temps T > 0 il existe une constante
CT > 0 indépendante de ∆x et ∆t telle que

max
0⩽tn⩽T

||en||ℓ2 ⩽ CT

(
(∆x)p + (∆t)q

)
. (28)
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On remarque que l’estimation (28) est indépendante du nombre de points
de discrétisation J .

Démonstration. Un schéma linéaire à deux niveaux peut s’écrire sous la
forme condensée c’est-à-dire

un+1 = Bun,

où B est la matrice d’itération (carrée de taille J). On note yn = (ynj )1⩽j⩽J

avec ynj = y(tn, xj). Par hypothèse sur la consistance, il existe un vecteur
σn tel que

yn+1 = Byn +∆t σn

avec

||σn||ℓ2 ⩽ C
(
(∆x)p + (∆t)q

)
.

On obtient

en+1 = Ben −∆t σn,

d’où, par récurrence,

en = Bne0 −∆t

n∑
k=1

Bn−kσk−1.

Or, la stabilité du schéma veut dire que

||un||ℓ2 =
∣∣∣∣Bnu0

∣∣∣∣
ℓ2

⩽ K
∣∣∣∣u0∣∣∣∣

ℓ2

pour toute donnée initiale, c’est-à-dire que ||Bn||ℓ2→ℓ2 ⩽ K où la constante
K ne dépend pas de n. D’autre part, e0 = 0, donc la relation précédente
donne

||en||ℓ2 ⩽ ∆t
n∑

k=1

∣∣∣∣∣∣Bn−k
∣∣∣∣∣∣
ℓ2

∣∣∣∣∣∣σk−1
∣∣∣∣∣∣
ℓ2

⩽ ∆t nKC
(
(∆x)p + (∆t)q

)
,

ce qui fournit l’inégalité voulue avec la constante CT = TKC (puisque n∆t ⩽
T ). □

Le Théorème de Lax est valable pour toute EDP, pas seulement pour
l’équation de la chaleur. Il admet une réciproque au sens où un schéma
linéaire consistant à deux niveaux qui converge est nécessairement stable,
mais nous ne préciserons pas ce sujet.

3.3. Le cas multidimensionnel. Nous donnons ici simplement un aperçu
des méthodes multidimensionnelles, sans rentrer dans les détails. Nous pou-
vons facilement adapter le cas unidimensionel en espace au cas multidimen-
sionel en espace. Considérons Ω = (0, 1) × (0, L) avec des conditions aux
limites de Dirichlet pour le problème exact suivant

∂y

∂t
− ν

∂2y

∂x2
− ν

∂2y

∂y2
= 0, (x, y, t) ∈ Ω× R∗

+,

y(t = 0, x, y) = y0(x, y), (x, y) ∈ Ω,

y(t, x, y) = 0, t ∈ R∗
+, (x, y) ∈ ∂Ω.

(29)
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On introduit deux discrétisations en espace ∆x = 1/(Nx + 1) > 0 et
∆y = L/(Ny + 1) > 0, où Nx, Ny ∈ N. Le pas de temps sera ∆t, et les
coordonnées sont donc, pour n ⩾ 0, 0 ⩽ j ⩽ Nx + 1, 0 ⩽ k ⩽ Ny + 1,

(tn, xj , yk) = (n∆t, j∆x, k∆y). (30)

On note y la solution exacte de (29), et unj,k les valeurs d’une solution
approchée. Les conditions aux limites de Dirichlet se traduisent, pour n > 0,
en

un0,k = unNx+1,k = 0, ∀k, unj,0 = unj,Ny+1 = 0, ∀j. (31)

La donnée initiale est discrétisée en u0j,k = y0(xj , yk) ∀j, k.
La généralisation au cas bidimensionnel du schéma explicite est évidente

un+1
j,k − unj,k

∆t
+ ν

−unj−1,k + 2unj,k − unj+1,k

(∆x)2
+ ν

−unj,k−1 + 2unj,k − unj,k+1

(∆y)2
= 0,

(32)

pour n ⩾ 0, j ∈ {1, . . . , Nx} et k ∈ {1, . . . , Ny}. La seule différence no-
table avec le cas unidimensionnel est le caractère deux fois plus sévère de la
condition CFL.

3.4. Exercices.

3.4.1. Advection. On considère l’équation d’advection linéaire à vitesse con-
stante

∂ty + a ∂xy = 0, a ∈ R,

et le schéma explicite centré associé

un+1
i = uni − λ

(
uni+1 − uni−1

)
, λ :=

a∆t

∆x
.

On définit l’erreur de consistance

σn
i :=

yn+1
i − yni

∆t
+ a

yni+1 − yni−1

2∆x
.

Montrer que le schéma est consistant d’ordre 1 en temps et 2 en espace (on
ne demande pas ceci au niveau de la convergence de la solution mais au
niveau de la consistance).

3.4.2. Schéma de Gear. On considère l’équation de la chaleur (21) et le
schéma de Gear

3un+1
i − 4uni + un−1

i

2∆t
+ ν

−un+1
i−1 + 2un+1

i − un+1
i+1

(∆x)2
= 0.

Montrer qu’il est d’ordre 2 en espace et en temps.

4. Méthode des volumes finis

La méthode des volumes finis est utilisée quand il existe une quantité
conservée et lorsqu’on veut que cette propriété soit exactement respectée
par le schéma numérique. On montrera un tel schéma sur l’exemple suivant.
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4.1. Équation de transport non linéaire. Soit y0 ∈ C∞(R,R) à support
compact, c’est-à-dire que

∃r ⩾ 0, ∀x ∈]−∞,−r] ∪ [r,+∞[, y0(x) = 0.

Soit f : R → R une fonction de flux (au moins C1). On considère l’équation
de transport linéaire à vitesse constante{

∂ty(t, x) + ∂x (f (y(t, x))) = 0, x ∈ R, t > 0

y(x, 0) = y0(x).
(33)

Quand pour tout x ∈ R, f(x) = ax, où a ∈ R, on a l’équation de transport
linéaire et la solution exacte est y(t, x) = y0(at− x).

4.2. Forme intégrale et quantité conservée. Dans l’équation exacte (33),
la quantité conservée est la masse totale

M(t) :=

∫
R
y(t, x)dx ∈ R.

Lemma 4.1 (Conservation de la masse pour la solution exacte). Pour tout
t ⩾ 0, M(t) = M(0).

Démonstration. Soit x1, x2 ∈ R tels que x1 < x2. En intégrant l’équation (33)
sur [x1, x2], on a

d

dt

∫ x2

x1

y(t, x)dx =

∫ x2

x1

∂ty(t, x) dx = −
∫ x2

x1

∂xf(y(t, x))dx

= f(y(t, x1))− f(y(t, x2)).

Or, comme y0 est à support compact, y(t, ·) est à support compact pour tout
t ∈ R+. Donc y(t, x) → 0 quand x → ±∞. Faire x1 → −∞ et x2 → +∞
donne que d

dtM(t) = f(0)− f(0) = 0. □

4.3. Maillage, volumes de contrôle et moyennes de cellule. On in-
troduit un maillage (éventuellement non uniforme) donné par des interfaces

· · · < xi− 1
2
< xi+ 1

2
< xi+ 3

2
< · · · ,

et les cellules (volumes de contrôle)

Ii = [xi− 1
2
, xi+ 1

2
], ∆xi = xi+ 1

2
− xi− 1

2
.

On définit la moyenne sur chaque cellule, qui sera l’inconnue de la méthode

yi(t) :=
1

∆xi

∫
Ii

y(t, x) dx, (34)

et quand tous les ∆xi sont petits, on a bien sûr yi(t) ≃ y(t, xi). On remarque
aussi que

M(t) =
∑
i∈Z

yi(t)∆xi. (35)
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4.4. Schéma de volumes finis : origine du schéma. En intégrant (33)
sur Ii, on obtient

d

dt

∫
Ii

y(t, x) dx+ f(y(xi+ 1
2
, t))− f(y(xi− 1

2
, t)) = 0,

et donc
d

dt
yi(t) = − 1

∆xi

(
f(y(xi+ 1

2
, t))− f(y(xi− 1

2
, t))

)
.

La quantité yi(t) représente la quantité de masse dans le domaine Ii. Sa
dérivée représente la variation de masse, et elle est donnée par le flux, qui
est la somme entre la masse entrante par la gauche de Ii, 1

∆xi
f(y(xi− 1

2
, t))

et la masse entrante par la droite 1
∆xi

f(y(xi+ 1
2
, t)). L’idée des volumes finis

est d’approximer les flux exacts aux interfaces par un flux numérique.
On introduit un flux numérique

F : R× R → R,

qui approxime le flux à l’interface lorsque la solution est approximée par des
valeurs constantes à gauche et à droite.

Par exemple le flux numérique de Lax–Friedrichs est défini par

F (uL, uR) =
1

2

(
f(uL) + f(uR)

)
− α

2
(uR − uL), (36)

où α > 0 est tel que α ⩾ maxu∈U |f ′(u)|, et U est un intervalle contenant les
valeurs de la solution.

4.5. Schéma discret d’Euler. Pour ∆t > 0, on note uni une approximation
de yi(n∆t), donc

uni ≃ yi(n∆t) ≃ yni

et on pose

Fn
i+ 1

2

:= F (uni , u
n
i+1).

Le schéma d’Euler explicite est

un+1
i = uni − ∆t

∆xi

(
Fn
i+ 1

2

− Fn
i− 1

2

)
. (37)

Le schéma d’Euler implicite est

un+1
i = uni − ∆t

∆xi

(
Fn+1
i+ 1

2

− Fn+1
i− 1

2

)
.

Nous allons faire l’analyse d’Euler explicite.

4.6. Conservation discrète. Définissons la version discrète de la masse

mn :=
∑
i∈Z

uni ∆xi.

Comme uni ≃ yi(n∆t), et par (35), on a

mn ≃ M(n∆t).

Le schéma a été choisi de manière à ce que cette masse approximée soit
conservée.
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Proposition 4.2 (Conservation de la masse dans le schéma discret). Le
schéma (37) de volumes finis est conservatif au sens où pour tout n ∈ N,

mn = m0 = M(0).

Démonstration. Soit J ∈ N. En multipliant le schéma par ∆xi et en som-
mant sur i, on obtient∑

−J⩽i⩽J

un+1
i ∆xi =

∑
−J⩽i⩽J

uni ∆xi −∆t
∑

−J⩽i⩽J

(
Fn
i+ 1

2

− Fn
i− 1

2

)
=

∑
−J⩽i⩽J

uni ∆xi +∆t
(
Fn
−J− 1

2

− Fn
J+ 1

2

)
. (38)

Or, Fn
J+ 1

2

= F (unJ , u
n
J+1) mais comme y0 est à support compact, on a que

quel que soit s ∈ N, usi → 0 quand i → ±∞. Ainsi, Fn
J+ 1

2

→ F (0, 0) quand
J → +∞. On a de même Fn

−J− 1
2

→ F (0, 0) quand J → +∞. En faisant
J → +∞ dans (38), on obtient

mn+1 = mn.

Par ailleurs m0 = M(0) car initialement u0i =
∫
Ii
y0 pour tout i ∈ Z. □

4.7. Consistance. Nous le faisons sur un maillage uniforme ∆xi = ∆x car
le cas non uniforme est similaire.

On définit les valeurs exactes échantillonnées

yni := y(tn, xi), xi = i∆x, tn = n∆t.

Nous définissons l’erreur de troncature locale

σn
i :=

yn+1
i − yni

∆t
+

1

∆x

(
F (yni , y

n
i+1)− F (yni−1, y

n
i )
)

On suppose que f ∈ C2(R), le flux numérique F : R2 → R est consistant
avec f , c’est-à-dire que

F (v, v) = f(v), ∀v ∈ R. (39)

On peut vérifier que le flux (36) respecte cette propriété.

Proposition 4.3 (Consistance). Supposons (39), et F est C1 au voisinage
de la diagonale {(v, v), v ∈ R}. Soit y ∈ C2(R× [0, T ]) une solution régulière
de l’équation exacte (33). Alors pour le schéma Euler explicite (37), on a
que pour tout T > 0, il existe CT > 0, indépendant de ∆t, de ∆x, de i et de
n ⩽ N , tel que

|σn
i | ⩽ CT (∆t+∆x).

Démonstration. On a

yn+1
i = yni +∆t (∂ty)

n
i +

∆t2

2
(∂2

t y)
n
i +O(∆t3).

Donc
yn+1
i − yni

∆t
= (∂ty)

n
i +

∆t

2
(∂2

t y)
n
i +O(∆t2).
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De même,

yni+1 = yni +∆x (∂xy)
n
i +

(∆x)2

2
(∂2

xy)
n
i +O(∆x3)

yni−1 = yni −∆x (∂xy)
n
i +

(∆x)2

2
(∂2

xy)
n
i +O(∆x3).

En particulier,

yni+1 − yni = ∆x (∂xy)
n
i +O((∆x)2), yni − yni−1 = ∆x (∂xy)

n
i +O((∆x)2).

(40)

Développons le flux numérique au voisinage de la diagonale. Comme F est
C1 et que (yni , y

n
i+1) et (yni−1, y

n
i ) sont proches de (yni , y

n
i ), et en utilisant la

consistance F (yni , y
n
i ) = f(yni ), on peut écrire des développements de Taylor

à l’ordre 1

F (yni , y
n
i+1) = F (yni , y

n
i ) + ∂2F (yni , y

n
i ) (y

n
i+1 − yni ) +O

(
(yni+1 − yni )

2
)
,

= f(yni ) + ∂2F (yni , y
n
i ) (y

n
i+1 − yni ) +O((∆x)2)

où on a utilisé que yni+1 − yni = O(∆x). De même,

F (yni−1, y
n
i ) = F (yni , y

n
i ) + ∂1F (yni , y

n
i ) (y

n
i−1 − yni ) +O

(
(yni−1 − yni )

2
)

= f(yni ) + ∂1F (yni , y
n
i ) (y

n
i−1 − yni ) +O((∆x)2),

Ainsi

F (yni , y
n
i+1)− F (yni−1, y

n
i )

= ∂2F (yni , y
n
i ) (y

n
i+1 − yni )− ∂1F (yni , y

n
i ) (y

n
i−1 − yni ) +O((∆x)2)

=
(40)

∆x
(
∂1F (yni , y

n
i ) + ∂2F (yni , y

n
i )
)
(∂xy)

n
i +O((∆x)2).

Puisque F est C1 et vérifie F (y, y) = f(y), alors

f ′(y) =
d

dy
F (y, y) = ∂1F (y, y) + ∂2F (y, y)

et donc
1

∆x

(
F (yni , y

n
i+1)− F (yni−1, y

n
i )
)
= f ′(yni ) (∂xy)

n
i +O(∆x).

On a obtenu

σn
i =

(
(∂ty)

n
i +O(∆t)

)
+
(
f ′(yni ) (∂xy)

n
i +O(∆x)

)
.

Or, comme y est solution exacte régulière, on a

(∂ty)
n
i + (∂xf(y))(tn, xi) = 0.

Mais (∂xf(y))(tn, xi) = f ′(y) (∂xy)
n
i , donc

(∂ty)
n
i + f ′(yni ) (∂xy)

n
i = 0.

□
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4.8. Stabilité. On pose

λ :=
∆t

∆x
.

Dans le cas général (flux non linéaire), une notion de stabilité utile en
volumes finis est souvent la stabilité ℓ∞ (principe du maximum).

On suppose que le flux numérique F vérifie :{
∂1F (u, v) ⩾ 0, ∂2F (u, v) ⩽ 0

∃L ⩾ 0 ∀u, v ∈ R, j ∈ {1, 2}, |∂jF (u, v)| ⩽ L.
(41)

Par exemple le flux (36) vérifie ces propriétés.

Proposition 4.4 (Stabilité, principe du maximum discret). Nous supposons (39), (41),
que F est C1, et la condition CFL

2λL ⩽ 1. (42)

Alors pour tout n ∈ N, ∣∣∣∣un+1
∣∣∣∣
ℓ∞

⩽ ||un||ℓ∞ .

On en déduit facilement la relation de stabilité ||un||ℓ∞ ⩽
∣∣∣∣u0∣∣∣∣

ℓ∞
pour

tout n ∈ N.

Démonstration. On fixe n et i. On considère la fonction

Φ(α, β, γ) := β − λ
(
F (β, γ)− F (α, β)

)
,

le schéma se réécrit

un+1
i = Φ(uni−1, u

n
i , u

n
i+1).

• Prouvons que Φ est croissante en chacun de ses arguments. On calcule
∂Φ

∂α
= λ∂1F (α, β) ⩾ 0,

∂Φ

∂γ
= −λ∂2F (β, γ) ⩾ 0,

∂Φ

∂β
= 1− λ

(
∂1F (β, γ)− ∂2F (α, β)

)
.

Avec (41),

∂1F (β, γ)− ∂2F (α, β) ⩽ |∂1F (β, γ)|+ |∂2F (α, β)| ⩽ 2L.

Cela donne
∂Φ

∂β
⩾ 1− 2λL ⩾

(42)
0.

• Soient

an := min
j∈Z

unj , bn := max
j∈Z

unj .

Alors pour tout i ∈ Z et pour tout n ∈ N,

an ⩽ uni−1, uni , uni+1 ⩽ bn.

Comme Φ est croissante en chacun de ses arguments,

Φ(an, an, an) ⩽ Φ(uni−1, u
n
i , u

n
i+1) ⩽ Φ(bn, bn, bn).
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Mais, par (39), on a Φ(c, c, c) = c, donc

an ⩽ un+1
i ⩽ bn.

On en déduit la conclusion. □

4.9. Convergence. On se place dans le cas du transport linéaire

f(x) = ax

avec a ∈ R constant.
On suppose une nouvelle condition CFL

|a|λ ⩽ 1. (43)

On note y(·, t) la solution exacte, donnée explicitement par

y(x, t) = y0(x− at).

On se restreint également au flux numérique de Lax-Friedrichs (36), avec
α = |a|, donc

F (uL, uR) =
a+ |a|

2
uL +

a− |a|
2

uR = a (δa>0uL + δa<0uR) .

On peut prouver la convergence d’ordre 1 en ℓ∞ en temps fini. On rappelle
que

||un||ℓ∞ = sup
i∈Z

|uni | .

Theorem 4.5 (Convergence). Soit T > 0 fixé. On fait les hypothèses des
Proposition 4.3 et 4.4, et on suppose la condition CFL (43). Alors il existe
une constante CT > 0 telle que, pour tout n tel que tn ⩽ T ,

||un − yn||ℓ∞ ⩽ CT (∆t+∆x).

CT est indépendante de n, de ∆t et de ∆x.

Démonstration. On a stabilité et consistance du schéma par les résultats
précédents. On définit ν := aλ. Pour a > 0, on a F (uL, uR) = auL et le
schéma s’écrit

un+1
i = (1− ν)uni + ν uni−1.

Pour a < 0, on a F (uL, uR) = auR et le schéma s’écrit

un+1
i = (1− |ν|)uni + |ν|uni+1.

On donne seulement la preuve pour a > 0 puisque le cas a < 0 est identique
en échangeant i−1 et i+1. On définit l’erreur eni := uni −yni . La consistance
se réécrit

yn+1
i = (1− ν) yni + ν yni−1 +∆t σn

i ,

où σn
i est bornée uniformément par |σn

i | ⩽ C(∆t+∆x), pour tn ⩽ T , grâce
à la Proposition (4.3). On obtient l’équation de propagation de l’erreur

en+1
i = (1− ν) eni + ν eni−1 −∆t σn

i .

Par la condition CFL (43), on a 0 ⩽ ν ⩽ 1, donc

|en+1
i | ⩽ (1− ν)|eni |+ ν|eni−1|+∆t |σn

i |.
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En prenant le supremum sur i, on obtient∣∣∣∣en+1
∣∣∣∣
ℓ∞

⩽ (1− ν) ||en||ℓ∞ + ν ||en||ℓ∞ +∆t ||σn||ℓ∞ = ||en||ℓ∞ +∆t ||σn||ℓ∞ .

On pourrait maintenant utiliser le lemme de Grönwall discret, mais on peut
aussi directement itérer . On rappelle que N est tel que tN ⩽ T ⩽ tN+1. On
obtient

||en||ℓ∞ ⩽
∣∣∣∣e0∣∣∣∣

ℓ∞
+∆t

n−1∑
k=0

∣∣∣∣∣∣σk
∣∣∣∣∣∣
ℓ∞

= ∆t

n−1∑
k=0

∣∣∣∣∣∣σk
∣∣∣∣∣∣
ℓ∞

⩽ n∆t max
0⩽k⩽N

∣∣∣∣∣∣σk
∣∣∣∣∣∣
ℓ∞

⩽
tn⩽T

T max
0⩽k⩽N

∣∣∣∣∣∣σk
∣∣∣∣∣∣
ℓ∞

⩽
Prop
(4.3)

CT (∆t+∆x).

□

4.10. Exercices.

4.10.1. Schéma conservant l’énergie. On considère l’équation d’advection (33)
avec f(y) = ay, a > 0. On suppose que la donnée initiale y0 est lisse et à
support compact. On définit l’énergie

E(t) :=
1

2

∫
R
y(t, x)2 dx.

Montrer que cette quantité est conservée, c’est-à-dire que E(t) ne dépend
pas de t.

On note les moyennes de cellule yi(t) comme en (34). On définit

u
n+1/2
i :=

un+1
i + uni

2
,

on choisit un pas spatial ∆x > 0 et on écrit un schéma de volumes finis

un+1
i − uni

∆t
+ a

u
n+1/2
i+1 − u

n+1/2
i−1

2∆x
= 0.

On définit l’énergie discrète

En :=
∆x

2

∑
i∈Z

|uni |
2 .

Montrer que le schéma donné conserve l’énergie discrète.

5. Méthode variationnelle

5.1. Le problème de Dirichlet.

5.1.1. Formulation classique. Soit Ω un ouvert borné de Rd, d ⩾ 1. On
considère le problème {−∆u = f, dans Ω,

u = 0, sur ∂Ω,
(44)

où f ∈ C(Ω) et ∆u = ∂2
1u+ ∂2

2u, où l’on désigne par ∂2
i u la dérivée partielle

d’ordre 2 par rapport à la i-ème variable.

Definition 5.1. On appelle solution classique de (44) une fonction u ∈
C2(Ω) qui vérifie (44).
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5.1.2. Formulation faible. On rappelle que l’espace H1
0 (Ω) est défini comme

l’adhérence de C∞
c (Ω) dans

H1(Ω) = {u ∈ L2(Ω); Du ∈ L2(Ω)},

où Du désigne la dérivée faible de u. Par exemple |·| en dimension 1 a une
dérivée faible mais n’est pas dérivable en 0. Les conctions discontinues en
dimension 1 n’ont pas de dérivée faible, les dérivées distributionnelles sont
des Dirac aux points de discontinuité. On rappelle que l’espace H1(Ω) muni
du produit scalaire

(u, v)H1 :=

∫
Ω
uv +

d∑
i=1

∫
Ω
DiuDiv (45)

est un espace de Hilbert. Les espaces H1(Ω) et H1
0 (Ω) font partie des espaces

dits “de Sobolev”.
L’introduction de solutions plus générales permet de s’affranchir de la

régularité C2, on les appellera “solutions faibles”.

Definition 5.2 (Formulation faible). Soit f ∈ L2(Ω), on dit que u est solu-
tion faible de (44) si u est solution de

u ∈ H1
0 (Ω),

d∑
i=1

∫
Ω
DiuDiφ =

∫
Ω
f φ, ∀φ ∈ H1

0 (Ω).
(46)

5.1.3. Formulation variationnelle. On définit

J(v) :=
1

2

∫
Ω
∇v · ∇v −

∫
Ω
f v.

où on note ∫
Ω
∇u · ∇φ =

d∑
i=1

∫
Ω
DiuDiφ.

Definition 5.3 (Formulation variationnelle). Soit f ∈ L2(Ω). On dit que u
est solution variationnelle de (44) si u est solution du problème de minimi-
sation {

u ∈ H1
0 (Ω),

J(u) ⩽ J(v) ∀v ∈ H1
0 (Ω).

(47)

5.1.4. Classique implique faible.

Lemma 5.4 (Une solution classique est une solution faible). Soit u une
solution classique de (44). Alors u ∈ H1

0 (Ω) et pour tout fonction φ ∈
H1

0 (Ω), on a ∫
Ω
∇u · ∇φ =

∫
Ω
f φ. (48)

Proof. Soit u ∈ C2(Ω) une solution classique de (44), et soit φ ∈ C∞
c (Ω),

où C∞
c (Ω) désigne l’ensemble des fonctions de classe C∞ à support compact
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dans Ω. On multiplie (44) par φ et on intègre sur Ω (on appellera par la
suite φ “fonction test”), on a donc∫

Ω
−φ∆u =

∫
Ω
f φ.

Notons que ces intégrales sont bien définies, puisque ∆u ∈ C(Ω) et f ∈ C(Ω).
Par intégration par parties (formule de Green), on a :∫

Ω
−∆uφ = −

d∑
i=1

∫
Ω
∂2
i uφ =

d∑
i=1

∫
Ω
∂iu ∂iφ−

∫
∂Ω

div (φ∇u)

=
Green

d∑
i=1

∫
Ω
∂iu ∂iφ−

∫
∂Ω

(n · ∇u) (s)φ(s) dγ(s),

où ni désigne la i-ème composante du vecteur unitaire normal à la frontière
∂Ω de Ω, et extérieur à Ω, et dγ désigne le symbole d’intégration sur ∂Ω.
Comme φ est nulle sur ∂Ω, on obtient :

d∑
i=1

∫
Ω
∂iu ∂iφ =

∫
Ω
f φ,

Prenons maintenant comme fonction test φ, non plus une fonction de
C∞
c (Ω), mais une fonction de H1

0 (Ω). Comme φ ∈ H1
0 (Ω), par définition, il

existe (φn)n∈N ⊂ C∞
c (Ω) telle que

φn → φ dans H1 lorsque n → +∞,

soit encore

∥φn − φ∥H1 = ∥φn − φ∥2L2 +
∑
i

∥Diφn −Diφ∥2L2 −→
n→+∞

0

Pour chaque fonction φn ∈ C∞
c (Ω) on a par (48) :

d∑
i=1

∫
Ω
∂iu ∂iφn =

∫
Ω
f φn, ∀n ∈ N.

Or la i-ème dérivée partielle ∂iφn converge vers Diφ dans L2 (donc dans L2

faible) lorsque n → ∞, et φn tend vers φ dans L2(Ω). On a donc :∫
Ω
∂iu ∂iφn dx −→

n→+∞

∫
Ω
∂iuDiφdx

et ∫
Ω
f φn dx −→

n→+∞

∫
Ω
f φ dx

L’égalité est donc vérifiée pour toute fonction φ ∈ H1
0 (Ω).

Montrons maintenant que si u est solution classique de (44) alors u ∈
H1

0 (Ω). En effet, si u ∈ C2(Ω), alors u ∈ C(Ω) donc u ∈ L2(Ω); de plus
∂iu ∈ C(Ω) donc ∂iu ∈ L2(Ω). On a donc bien u ∈ H1(Ω). Il reste à montrer
que u ∈ H1

0 (Ω).
Pour cela on rappelle (ou on admet) les théorèmes de trace suivants.
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Theorem 5.5 (Existence de l’opérateur trace). Soit Ω un ouvert (borné ou
non borné) de Rd, d ⩾ 1, de frontière ∂Ω lipschitzienne, alors C∞

c (Ω) est
dense dans H1(Ω). On peut donc définir par continuité l’application “trace”,
linéaire continue de H1(Ω) dans L2(∂Ω), définie par :

γ(u) = u|∂Ω si u ∈ C∞
c (Ω),

et par

γ(u) = lim
n→+∞

γ(un)

si u ∈ H1(Ω), u = limn→+∞ un, (un)n∈N ⊂ C∞
c (Ω).

Dire que l’application (linéaire) γ est continue est équivalent à dire qu’il
existe C ∈ R+ tel que

∥γ(u)∥L2(∂Ω) ⩽ C∥u∥H1(Ω) pour tout u ∈ H1(Ω). (3.4)

Notons que γ(H1(Ω)) ⊂ L2(∂Ω), mais γ(H1(Ω)) ̸= L2(∂Ω). On note
H1/2(∂Ω) = γ(H1(Ω)).

Remarquons que si Ω est un ouvert borné, alors Ω est compact et donc
toutes les fonctions C∞ sont à support compact dans Ω.

Theorem 5.6 (Noyau de l’opérateur trace). Soit Ω un ouvert borné de Rd

de frontière ∂Ω lipschitzienne, et γ l’opérateur trace défini ci-dessus. Alors

ker γ = H1
0 (Ω).

Si u ∈ C2(Ω) est une solution classique de (44), alors γ(u) = u|∂Ω = 0
donc u ∈ ker γ, et par le théorème précédent ceci prouve que u ∈ H1

0 (Ω).
Nous avons ainsi montré que toute solution classique de (44) vérifie u ∈

H1
0 (Ω) et l’égalité (48). □

5.1.5. Existence et unicité des formulations faible et variationnelle. On cherche
à montrer l’existence et l’unicité de la solution de (46) et (47). Pour cela, on
utilise le théorème de Lax–Milgram, qu’on rappelle ici.

Soit H un espace de Hilbert et a une forme bilinéaire sur H. On définit
J : H → R par

J (v) =
1

2
a(v, v)− T (v). (49)

Theorem 5.7 (Lax–Milgram). Soit H un espace de Hilbert, soit a une forme
bilinéaire continue coercive sur H et T ∈ H ′. Il existe un unique élément u
tel que {

u ∈ H,

a(u, v) = T (v), ∀v ∈ H.
(50)

De plus, si a est symétrique, u est l’unique solution du problème de minimi-
sation {

u ∈ H,

J (u) ⩽ J (v), ∀v ∈ H.
(51)

Ici, a coercive signifie qu’il existe C > 0 tel que pour tout v ∈ H1
0 (Ω),

a(v, v) ⩾ C ||v||H1 .

Montrons qu’on peut appliquer le théorème de Lax–Milgram pour les prob-
lèmes (46) et (47).
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Proposition 5.8 (Existence et unicité de la solution de (44)). Si f ∈ L2(Ω),
il existe un unique u ∈ H1

0 (Ω) solution de (46) et (47).

Proof. Montrons que les hypothèses du théorème de Lax–Milgram sont véri-
fiées. L’espace H = H1

0 (Ω) est un espace de Hilbert. La forme bilinéaire a
est définie par

a(u, v) =

∫
Ω
∇u · ∇v =

d∑
i=1

∫
Ω
DiuDiv,

et la forme linéaire T par

T (v) =

∫
Ω
fv.

Montrons que T ∈ H ′. En effet,

|T (v)| ⩽ ∥f∥L2 ∥v∥L2 ⩽ ∥f∥L2 ∥v∥H1 .

On en déduit que T est continue sur H1
0 (Ω), ce qui est équivalent à dire que

T ∈ H−1(Ω) (dual topologique de H1
0 (Ω)).

Montrons que a est bilinéaire, continue et symétrique. La continuité
s’obtient par

|a(u, v)| =
∣∣∣∣∫

Ω
∇u · ∇v

∣∣∣∣ ⩽ ∥∇u∥L2 ∥∇v∥L2 ⩽ ∥u∥H1 ∥v∥H1 .

Les caractères bilinéaire et symétrique sont évidents.
Montrons que a est coercitive. En effet,

a(v, v) =

∫
Ω
|∇v|2 =

d∑
i=1

∫
Ω
|Div|2 ⩾

1

diam(Ω)2 + 1
∥v∥2H1 ,

par l’inégalité de Poincaré, qui dit qu’il existe C > 0 tel que pour tout
v ∈ H1

0 ,

||v||L2 ⩽ diam (Ω) ||∇v||L2 .

Comme T ∈ H ′ et a est bilinéaire, continue, coercitive, le théorème de Lax–
Milgram s’applique : il existe une unique fonction u ∈ H1

0 (Ω) solution de
(46), et comme a est symétrique, u est l’unique solution du problème de
minimisation associé. □

5.1.6. Formulation forte.

Definition 5.9 (Solution forte dans H2). Soit f ∈ L2(Ω), on dit que u est
solution forte de (44) dans H2(Ω) si

u ∈ H2(Ω) ∩H1
0 (Ω) et −∆u = f dans L2(Ω).

Remarquons que si u est solution forte C2 de (44), alors u est solution
forte H2. De même, si u est solution forte H2 de (44) alors u est solution
faible de (44). Les réciproques sont fausses.

On admettra le théorème de régularité suivant.

Theorem 5.10 (Régularité). Soit Ω un ouvert borné de Rd. On suppose
que Ω a une frontière de classe C2, ou que Ω est convexe à frontière lips-
chitzienne. Si f ∈ L2(Ω) et si u ∈ H1

0 (Ω) est solution faible de (44), alors
u ∈ H2(Ω). De plus, si f ∈ Hm(Ω) alors u ∈ Hm+2(Ω).
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Remark 5.11 (Différences entre les méthodes de discrétisation). Lorsqu’on
adopte une discrétisation par différences finies, on a directement le problème
(44). Lorsqu’on adopte une méthode de volumes finis, on discrétise le “bilan”
obtenu en intégrant (44) sur chaque maille. Lorsqu’on utilise une méthode
variationnelle, on discrétise la formulation variationnelle (47) dans le cas de
la méthode de Ritz, la formulation faible (46) dans le cas de la méthode de
Galerkin.

Remarquons également que dans la formulation faible (46), les conditions
aux limites de Dirichlet homogènes u = 0 sont prises en compte dans l’espace
u ∈ H1

0 (Ω), et donc également dans l’espace d’approximation HN . Pour le
problème de Neumann homogène, les conditions aux limites ne sont pas
explicites dans l’espace fonctionnel.

5.2. Problème de Dirichlet non homogène. On se place ici en dimension
1 d’espace, d = 1, et on considère :

−u′′ = f sur (0, 1),

u(0) = a,

u(1) = b,

(3.10)

où a et b sont des réels donnés. Ces conditions aux limites sont dites de
type Dirichlet non homogène ; comme a et b ne sont pas forcément nuls, on
cherche une solution dans H1(Ω) et non plus dans H1

0 (Ω).
Cependant, pour se ramener à l’espace H1

0 (Ω) (en particulier pour obtenir
que le problème est bien posé grâce au théorème de Lax–Milgram et à la
coercivité de la forme bilinéaire a(u, v) =

∫
Ω∇u∇v sur H1

0 (Ω)), on va utiliser
une technique dite de “relèvement”.

On pose u = u0 + ue où u0 est définie par :

u0(x) = a+ (b− a)x.

On a en particulier u0(0) = a et u0(1) = b. On a alors ue(0) = 0 et ue(1) = 0.
La fonction ue vérifie donc : 

−u′′e = f,

ue(0) = 0,

ue(1) = 0,

dont on connaît la formulation faible et dont on sait qu’il est bien posé.
Donc il existe un unique u ∈ H1(Ω) vérifiant u = u0 + ue, où ue ∈ H1

0 (Ω)
est l’unique solution du problème∫ 1

0
u′e v

′ =

∫ 1

0
f v ∀v ∈ H1

0 ((0, 1)).

De manière plus générale, soit un relèvement

u1 ∈ H1
a,b((0, 1)) = {v ∈ H1; v(0) = a et v(1) = b},

et soit u ∈ H1
0 ((0, 1)) l’unique solution faible du problème :

−u′′ = u′′1 + f,

u(0) = 0,

u(1) = 0.
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Alors u+ u1 est l’unique solution faible de (3.10), c’est-à-dire la solution du
problème 

u ∈ H1
a,b((0, 1)),∫ 1

0
u′v′ =

∫ 1

0
fv, ∀v ∈ H1

0 ((0, 1)).

On pourrait montrer que u ne dépend pas du relèvement.
Considérons maintenant le cas de la dimension 2 d’espace : d = 2. Soit Ω

un ouvert borné de Rd, considérons le problème :{−∆u = f dans Ω,

u = g sur ∂Ω.
(3.11)

Pour se ramener au problème de Dirichlet homogène, on veut construire un
relèvement, c’est-à-dire une fonction u0 ∈ H1(Ω) telle que γ(u0) = g, où γ est
l’application trace. On ne peut plus le faire de manière explicite comme en
dimension 1. En particulier, on rappelle qu’en dimension 2, l’espace H1(Ω)
n’est pas inclus dans C(Ω), contrairement au cas de la dimension 1.

Mais si g ∈ H1/2(∂Ω), on sait qu’il existe u0 ∈ H1(Ω) tel que g = γ(u0).
On cherche donc u sous la forme u = ue+u0 avec ue ∈ H1

0 (Ω) et u0 ∈ H1(Ω)
telle que γ(u0) = g.

Soit v ∈ H1
0 (Ω) ; on multiplie (3.11) par v et on intègre sur Ω :∫

Ω
−∆u v =

∫
Ω
f v,

c’est-à-dire : ∫
Ω
∇u∇v =

∫
Ω
f v.

Comme u = u0 + ue, on a donc :
ue ∈ H1

0 (Ω),∫
Ω
∇ue∇v =

∫
Ω
f v −

∫
Ω
∇u0∇v, ∀v ∈ H1

0 (Ω).
(3.12)

En dimension 2, il n’est pas toujours facile de construire le relèvement
u0. Il est donc usuel, dans la mise en œuvre des méthodes d’approximation
(par exemple par éléments finis), de se servir de la formulation suivante,
équivalente à (3.12) :

u ∈ {v ∈ H1(Ω); γ(v) = g sur ∂Ω},∫
Ω
∇u∇v =

∫
Ω
f v, ∀v ∈ H1

0 (Ω).
(3.13)

5.3. Condition de Neumann. Considérons maintenant le problème
−∆u = f, dans Ω,

∂u

∂n
= 0 sur ∂Ω,

(52)

où
∂u

∂n
= n · ∇u,
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n étant le vecteur normal à ∂Ω pointant vers l’extérieur. On appelle ce
problème problème de Dirichlet avec conditions de Neumann homogènes.
En intégrant la première équation du système, on voit que∫

Ω
−∆u =

∫
∂Ω

∂u

∂n
=

∫
Ω
f = 0.

donc une condition nécessaire d’existence d’une solution est que
∫
Ω f = 0.

On remarque que la solution de (52) n’est pas unique, puisque si u est
solution alors u + c est aussi solution, pour tout c ∈ R. Pour éviter ce
problème on va chercher les solutions de (52) à moyenne nulle. On cherche
donc à (52) résoudre dans l’espace

H =

{
v ∈ H1(Ω) ;

∫
Ω
v = 0

}
.

Maintenant a est coercive sur H grâce à l’inégalité suivante, qui sera
admise.

Lemma 5.12 (Poincaré–Wirtinger). Soit Ω un ouvert borné de Rd de fron-
tière lipschitzienne, alors il existe C ∈ R∗

+, ne dépendant que de Ω, tel que
pour tout u ∈ H1(Ω), on a∣∣∣∣∣∣∣∣u− 1

|Ω|

∫
Ω
u

∣∣∣∣∣∣∣∣
L2(Ω)

⩽ C ||∇u||L2(Ω) . (53)

On a alors a(u, u) = ||∇u||2L2(Ω) et

||u||2H1 = ||u||2L2 + a(u, u) ⩽∫
Ω u=0

(53)

(
1 + C2

)
a(u, u),

donc la constante de coercivité est α = (1 + C2)−1.
Le problème 

u ∈ H,

a(u, v) =

∫
fv ∀v ∈ H,

admet donc une unique solution.

5.4. Formulation faible et formulation variationnelle. Nous donnons
ici un exemple de problème pour lequel on peut établir une formulation faible,
mais pas variationnelle. On se place en une dimension d’espace d = 1, et
on considère Ω =]0, 1[ et f ∈ L2(]0, 1[). On s’intéresse au problème suivant
d’advection diffusion{

−u′′ + u′ = f, dans ]0, 1[,

u(0) = u(1) = 0.
(54)

Cherchons une formulation faible. On choisit v ∈ H1
0 (Ω), on multiplie (54)

par v et on intègre par parties :∫
Ω
u′v′ +

∫
Ω
u′v =

∫
Ω
fv.
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Il est donc naturel de poser :

a(u, v) =

∫
Ω
u′v′ +

∫
Ω
u′v, T (v) =

∫
Ω
fv.

Il est évident que T est une forme linéaire continue sur H1
0 (Ω) (c’est à dire

T ∈ H−1(Ω)) et que la forme a est bilinéaire continue, mais pas symétrique,
donc on n’a pas l’existence du minimum dans (51). De plus elle est coercive.
En effet,

a(u, u) =

∫
Ω
u′2 +

∫
Ω
u′u =

∫
Ω
u′2 +

∫
Ω

1

2
(u2)′.

Or, comme u ∈ H1
0 (Ω), on a u = 0 sur ∂Ω et donc∫

Ω
(u2)′ = u2(1)− u2(0) = 0.

On en déduit que :

a(u, u) =

∫ 1

0
(u′)2,

et par l’inégalité de Poincaré, on conclut que a est coercive sur H1
0 (Ω). On en

déduit par le théorème de Lax–Milgram, l’existence et l’unicité de u solution
du problème 

u ∈ H1
0 (]0, 1[),∫ 1

0

(
u′v′ + u′v

)
=

∫ 1

0
fv.

6. Méthodes de Ritz et Galerkin

6.1. Principe général de la méthode de Ritz. On se place sous les
hypothèses suivantes :

H est un espace Hilbert,
a est une forme bilinéaire continue coercitive et symétrique,

T ∈ H ′.

(55)

On cherche à calculer u ∈ H telle que :

a(u, v) = T (v), ∀v ∈ H, (56)

ce qui revient à calculer u ∈ H solution du problème de minimisation (3.8),
avec J définie par (3.9).

L’idée de la méthode de Ritz est de remplacer H par un espace HN ⊂ H
de dimension finie (où dimHN = N), et de calculer U solution de{

U ∈ HN ,

J(U) ⩽ J(v), ∀v ∈ HN ,
(57)

en espérant que U soit “proche” (en un sens à définir) de u.

Theorem 6.1. Sous les hypothèses (55), si HN est un sous-espace vectoriel
de H et dimHN < +∞ alors le problème (57) admet une unique solution.
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Proof. Puisque HN est un espace de dimension finie inclus dans H, c’est donc
aussi un Hilbert. On peut donc appliquer le théorème de Lax–Milgram, et
on en déduit l’existence et l’unicité de U ∈ HN solution de (57), qui est aussi
solution de : {

U ∈ HN ,

a(U, v) = T (v), ∀v ∈ HN .

□

Nous allons maintenant exposer une autre méthode de démonstration
du théorème 6.1, qui a l’avantage d’être constructive, et qui nous permet
d’introduire les idées principales des méthodes numériques envisagées plus
loin. Comme l’espace HN considéré dans le théorème est de dimension N , il
existe une base (φ1, . . . , φN ) de HN . Si u ∈ HN , on peut donc développer

u =
N∑
i=1

uiφi.

On note

U = (u1, . . . , uN ) ∈ RN .

L’application ξ qui à u associe U est une bijection de HN dans RN . Posons
j = J ◦ ξ−1. On a donc :

j(U) = J(u) =
1

2
a

(
N∑
i=1

uiφi,
N∑
i=1

uiφi

)
− T

(
N∑
i=1

uiφi

)

=
1

2

N∑
i=1

N∑
j=1

uiuja(φi, φj)−
N∑
i=1

uiT (φi) =
1

2
U tKU − U tG

où K ∈ MN,N (R) est définie par Kij = a(φi, φj), et où Gi = T (φi). Chercher
uN solution de (57) est donc équivalent à chercher U solution de :{

U ∈ RN ,

j(U) ⩽ j(V ), ∀V ∈ RN ,
(58)

où

j(V ) :=
1

2
V tKV − V tG. (3.24)

Il est facile de vérifier que la matrice K est symétrique car a l’est. De même,
pour tout U ∈ RN ,

⟨U,KU⟩ =
∑

1⩽i,j⩽N

UiKijUj =
∑

1⩽i,j⩽N

UiUja(φi, φj)

= a

 N∑
j=1

Ujφj ,
N∑
j=1

Ujφj

 ⩾
a coercive

α

∣∣∣∣∣∣
∣∣∣∣∣∣
N∑
j=1

Ujφj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=
(φj)j base

α ||U ||2

donc K est définie positive par coercivité de a. Donc j est une fonctionnelle
quadratique sur RN , et on a donc existence et unicité de U ∈ RN tel que



44 UNIVERSITÉ DE CERGY

j(U) ⩽ j(V ) ∀V ∈ RN . L’unique solution du problème de minimisation (58)
est aussi la solution du système linéaire

KU = G,

on appelle souvent K la matrice de rigidité.

6.2. Résumé sur la technique de Ritz.
(1) On se donne HN ⊂ H.
(2) On trouve une base de HN .
(3) On calcule la matrice de rigidité K et le second membre G
(4) On minimise j par la résolution de KU = G.
(5) On calcule la solution approchée :

u(N) =

N∑
i=1

uiφi.

On appelle HN l’espace d’approximation. Le choix de cet espace sera
fondamental pour le développement de la méthode d’approximation. Le
choix de HN est formellement équivalent au choix de la base (φi)i=1...N .
Pourtant, le choix de cette base est capital même si u(N) ne dépend que du
choix de HN et pas de la base.

6.3. Choix de la base. Un premier choix consiste à choisir des bases in-
dépendantes de N c’est à dire

{base de HN+1} = {base de HN} ∪ {φN+1}.
Les bases sont donc emboîtées les unes dans les autres. Considérons par
exemple H = H1(]0, 1[), et l’espace d’approximation :

HN = Vect{1, X, . . . ,XN−1}.

Les fonctions de base sont donc φi = Xi−1, i = 1, . . . , N . On peut remarquer
que ce choix de base amène à une méthode d’approximation qui donne des
matrices pleines. Or, on veut justement éviter les matrices pleines, car les
systèmes linéaires associés sont coûteux (en temps et mémoire) à résoudre.

Le choix idéal serait de choisir une base (φi)i=1,...,N qui diagonalise a,
c’est-à-dire telle que

a(φi, φj) = λiδij ,

où

δij =

{
1 si i = j,

0 sinon.
(3.25)

On a alors K = diag(λ1, . . . , λN ), et explicitement

u(N) =
N∑
i=1

T (φi)

a(φi, φi)
φi.

Considérons par exemple le problème de Dirichlet (46), où a(φ, ϕ) =
∫
Ω∇φ ·

∇ϕ. Si φi est la i-ème fonction propre de l’opération −∆ avec conditions aux
limites de Dirichlet associée à λi, on obtient bien la propriété souhaitée. Mal-
heureusement, il est rare que l’on puisse connaître explicitement les fonctions
de base φi.
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Un deuxième choix consiste à choisir des bases dépendantes de N . Mais
dans ce cas, la base de HN n’est pas incluse dans celle de HN+1. La technique
des éléments finis qu’on verra au chapitre suivant, est un exemple de ce choix.
Dans la matrice K obtenue est creuse (c’est à dire qu’un grand nombre de
ses coefficients sont nuls). Par exemple, pour des éléments finis appliqués à
un opérateur du second ordre, on peut avoir un nombre de coefficients non
nuls de l’ordre de O(N).

6.4. Convergence de l’approximation de Ritz. Une fois qu’on a calculé
uN solution de (58), il faut se préocupper de savoir si u(N) est une bonne
approximation de u solution de (56), c’est à dire de savoir si

u(N) −→
N→+∞

u.

Pour vérifier cette convergence, on va se servir de la notion de consistance.

Definition 6.2 (Consistance). On dit que l’approximation de Ritz définie
par l’espace HN ⊂ H avec dimHN = N < +∞ est consistante si

d(u,HN ) −→
n→+∞

0, ∀u ∈ H, (59)

La condition (59) est équivalente à

inf
v∈HN

∥u− v∥ −→
n→+∞

0, ∀u ∈ H.

L’autre notion fondamentale pour prouver la convergence est la stabilité,
elle même obtenue grâce à la propriété de coercivité de a. Par stabilité, on
entend estimation a priori sur la solution approchée u(N) (avant même de
savoir si elle existe), où u(N) est solution de (58) ou encore de :{

u(N) ∈ HN

a(u(N), v) = T (v) ∀v ∈ HN .
(60)

On a l’estimation a priori suivante sur uN .

Proposition 6.3 (Stabilité). Sous les hypothèses du théorème 6.4, on a∣∣∣∣∣∣u(N)
∣∣∣∣∣∣
H

⩽
||T ||H′

α
.

Proof. On a

α∥u(N)∥2 ⩽
a

coercive

a(u(N), u(N)) =
(60)

T (u(N)) ⩽
T

continue

∥T∥H′ ∥u(N)∥H .

□

Theorem 6.4 (Céa). Soit H un espace de Hilbert réel. Soit a une forme bil-
inéaire continue symétrique coercive, soit M > 0 et α > 0 tels que a(u, v) ⩽
M∥u∥H∥v∥H et a(u, u) ⩾ α∥u∥2H . Soit T ∈ H ′ une forme linéaire continue.
Soit u ∈ H l’unique solution du problème{

u ∈ H,

a(u, v) = T (v), ∀v ∈ H.
(61)
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Soit HN ⊂ H tel que dimHN = N , et soit u(N) ∈ HN l’unique solution de{
u(N) ∈ HN ,

a(u(N), v) = T (v), ∀v ∈ HN .
(62)

Alors ∣∣∣∣∣∣u− u(N)
∣∣∣∣∣∣
H

⩽

√
M

α
d(u,HN ). (63)

Proof. • On va montrer que u(N) est la projection de u sur HN pour le
produit scalaire (·, ·)a induit par a, défini de H × H par (u, v)a = a(u, v).
On note ∥u∥a =

√
a(u, u), la norme induite par le produit scalaire a. La

norme ∥ · ∥a est équivalente à la norme ∥ · ∥H , en effet, grâce à la coercivité
et la continuité de a,

α∥u∥2H ⩽ ∥u∥2a ⩽ M∥u∥2H .

Donc (H, ∥ · ∥a) est un espace de Hilbert. Soit u la solution de (61), et soit
v := PHN

u la projection orthogonale de u sur HN relative au produit scalaire
a(·, ·). Par définition de la projection orthogonale, on a donc

PHN
u− u = −P⊥

HN
u ∈ H⊥

N ,

soit encore

a(PHN
u− u,w) = 0, ∀w ∈ HN .

En soustrayant (61) et (62), on obtient la condition d’orthogonalité de
Galerkin

a(u− u(N), w) = 0, ∀w ∈ HN .

En combinant ces deux relations, il vient

a(PHN
u− u(N), w) = 0, ∀w ∈ HN .

Or PHN
u− u(N) ∈ HN . En prenant w = PHN

u− u(N), on obtient

a(PHN
u− u(N), PHN

u− u(N)) = 0.

La coercivité de a implique alors PHN
u− u(N) = 0, donc

u(N) = PHN
u.

• Par définition de PHN
, on a :

∥u− PHN
u∥2a ⩽ ∥u− v∥2a, ∀v ∈ HN ,

ce qui s’écrit (puisque PHN
u = u(N)) :

a(u− u(N), u− u(N)) ⩽ a(u− v, u− v), ∀v ∈ HN .

Par coercivité et continuité de la forme bilinéaire a, on a donc ∀v ∈ HN ,

α∥u− u(N)∥2H ⩽ a(u− u(N), u− u(N)) ⩽ a(u− v, u− v) ⩽ M∥u− v∥2H .

On en déduit que :

∥u− u(N)∥H ⩽

√
M

α
∥u− v∥H , ∀v ∈ HN .

En passant à l’inf sur v, on obtient alors (63). □
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6.5. Méthode de Galerkin. On se place maintenant sous les hypothèses
suivantes :

H espace de Hilbert,
a : forme bilinéaire continue et coercive,

T ∈ H ′.

(3.30)

Remarquons que maintenant, a n’est pas nécessairement symétrique, les hy-
pothèses (3.30) sont donc plus générales que les hypothèses (3.21). On con-
sidère le problème {

u ∈ H,

a(u, v) = T (v), v ∈ H.
(64)

Par le théorème de Lax–Milgram, il y a existence et unicité de u ∈ H solution
de (64).

Le principe de la méthode de Galerkin est similaire à celui de la méthode
de Ritz. On se donne HN ⊂ H, tel que dimHN < +∞, et on cherche à
résoudre le problème approché :

(PN )

{
u(N) ∈ HN ,

a(u(N), v) = T (v), ∀v ∈ HN .
(65)

Par le théorème de Lax–Milgram, on a immédiatement :

Theorem 6.5. Sous les hypothèses, si HN ⊂ H et dimHN = N , il existe
un unique u(N) ∈ HN solution de (65).

Comme dans le cas de la méthode de Ritz, on va donner une autre méth-
ode, constructive, de démonstration de l’existence et unicité de uN qui per-
mettra d’introduire la méthode de Galerkin. Comme dimHN = N , il existe
une base (φ1, . . . , φN ) de HN . Soit v ∈ HN , on peut donc développer v sur
la base

v =
N∑
i=1

viφi,

et identifier v au vecteur (v1, . . . , vN ) ∈ RN . En écrivant que u(N) satis-
fait (65) pour tout v = φi, i = 1, . . . , N :

a(u, φi) = T (φi), ∀i = 1, . . . , N,

et en développant u sur la base (φi)i=1,...,N , on obtient :
N∑
j=1

a(φj , φi)u
(N)
j = T (φi), ∀i = 1, . . . , N.

On peut écrire cette dernière égalité sous forme d’un système linéaire

KU = G, (66)

où U :=
(
u
(N)
1 , . . . , u

(N)
N

)T
, Kij = a(φj , φi) et Gi = T (φi), pour i, j =

1, . . . , N . La matrice K n’est pas en général symétrique.

Proposition 6.6. Sous les hypothèses du Théorème (6.5), le système linéaire (66)
admet une unique solution.
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Proof. On va montrer que K est inversible en vérifiant que son noyau est
réduit à {0}. Soit w ∈ RN tel que Kw = 0. Décomposons w sur le N base
(φ1, . . . , φN ) de HN . On a

N∑
j=1

a(φj , φi)wj = 0.

Multiplions cette relation par wi et sommons pour i = 1 à N , on obtient
N∑
i=1

N∑
j=1

a(φj , φi)wjwi = 0.

Soit encore : a(w,w) = 0 où w := (w1, . . . , wN )T . Par coercivité de a, ceci
entraine que w = 0. On en déduit que wi = 0, ∀i = 1, . . . , N , ce qui achève
la preuve. □

Remark 6.7. Si a est symétrique, la méthode de Galerkin est équivalente à
celle de Ritz.

En résumé, la méthode de Galerkin comporte les mêmes étapes que la
méthode de Ritz, c’est à dire :

(1) On se donne HN ⊂ H.
(2) On trouve une base de HN .
(3) On calcule K et G.
(4) On résout KU = G.
(5) On écrit u(N) =

∑N
i=1 uiφi.

La seule différence est que l’étape 4 n’est pas issue d’un problème de min-
imisation. Comme pour la méthode de Ritz, il faut se poser la question
du choix du sous espace HN et de sa base, ainsi que de la convergence de
l’approximation de u solution de (64) par u(N) obtenue par la technique de
Galerkin. En ce qui concerne le choix de la base {φ1, . . . , φN}, les possibil-
ités sont les mêmes que pour la méthode de Ritz, voir paragraphe 3.2.1. De
même, la notion de consistance est identique à celle donnée pour la méthode
de Ritz (voir définition 3.19) et la démonstration de stabilité est identique
à celles effectuée pour la méthode de Ritz ; voir proposition 3.20 page 109.
On peut alors établir le théorème de convergence :

Theorem 6.8. Sous les hypothèses du théorème (57), si u est la solution
de (64) et uN la solution de (65), alors

∥u− u(N)∥H ⩽
M

α
d(u,HN ). (67)

Ici encore, M et α sont tels que : α∥v∥2 ⩽ a(v, u) ⩽ M∥v∥2 pour tout v
dans H (les réels M et α existent en vertu de la continuité et de la coercivité
de a).

Proof. Comme la forme bilinéaire a est coercive de constante α, on a :

α∥u− u(N)∥2H ⩽ a(u− u(N), u− u(N)).

On a donc, pour tout v ∈ H :

α∥u− u(N)∥2H ⩽ a(u− u(N), u− v) + a(u− u(N), v − u(N)).
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Or

a(u− u(N), v − u(N)) = a(u, v − u(N))− a(u(N), v − u(N)),

et par définition de u et u(N), on a :

a(u, v − u(N)) = T (v − u(N)), ∀v ∈ H

a(u(N), v − u(N)) = T (v − u(N)) ∀v ∈ HN .

On en déduit que :

α∥u− u(N)∥2H ⩽ a(u− u(N), u− v), ∀v ∈ HN ,

et donc, par continuité de la forme bilinéaire a :

α∥u− u(N)∥2H ⩽ M∥u− u(N)∥H ∥u− v∥H .

On obtient donc :

∥u− u(N)∥H ⩽
M

α
∥u− v∥H , ∀v ∈ HN ,

ce qui entraine (67). □

Remark 6.9. On peut remarquer que l’estimation (67) obtenue dans le cadre
de la metode de Galerkin est moins bonne que l’estimation (63) obtenue dans
le cadre de la methode de Ritz. Ceci est normal, puisque la methode de Ritz
est un cas particulier de la methode de Galerkin.

Grâce au théorème (6.8), on peut remarquer que u(N) converge vers u
dans H lorsque N tend vers +∞ dès que d(u,HN ) → 0 lorsque N → +∞.
C’est donc là encore une propriété de consistance dont nous avons besoin.

La propriété de consistance n’est pas toujours facile à montrer directement.
On utilise alors la caractérisation suivante :

Proposition 6.10 (Caractérisation de la consistance). Soit V un sous espace
vectoriel de H dense dans H. On suppose qu’il existe une fonction rN : V →
HN telle que pour tout v ∈ V ,

∥v − rN (v)∥H −→
N→+∞

0,

alors

d(u,HN ) −→
N→+∞

0.

Proof. Soit v ∈ V , et w = rN (v). Par définition, on a

d(u,HN ) ⩽ ∥u− rN (v)∥H ⩽ ∥u− v∥H + ∥v − rN (v)∥H .

Comme V est dense dans H, pour tout ε > 0, il existe v ∈ V , tel que
∥u−v∥H ⩽ ε. Choisissons v qui vérifie cette dernière inégalité. Par hypothèse
sur rN :

∀ε > 0, ∃N0 tel que N ⩾ N0 ⇒ ∥v − rN (v)∥ ⩽ ε.

Donc si N ⩾ N0, on a d(u,HN ) ⩽ 2ε. On en déduit que d(u,HN ) → 0
quand N → +∞. □
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7. La méthode des éléments finis

La méthode des éléments finis est une façon de choisir les bases des espaces
d’approximation pour les méthodes de Ritz et Galerkin.

7.1. Principe de la méthode. On se limitera dans le cadre de ce cours à
des problèmes du second ordre. L’exemple type sera le problème de Dirichlet
qu’on rappelle ici : {−∆u = f dans Ω,

u = 0 sur ∂Ω,
(68)

et l’espace de Hilbert sera l’espace de Sobolev H1(Ω) ou H1
0 (Ω).

On se limitera à un certain type d’éléments finis, dits “de Lagrange”. Don-
nons les principes généraux de la méthode.

Éléments finis de Lagrange. Soit Ω ⊂ R2 (ou R3). Soit H l’espace fonction-
nel dans lequel on recherche la solution (par exemple H1

0 (Ω) s’il s’agit du
problème de Dirichlet (3.1)). On cherche HN ⊂ H = H1

0 (Ω) et les fonc-
tions de base φ1, . . . , φN . On va déterminer ces fonctions de base à partir
d’un découpage de Ω en un nombre fini de cellules, appelés “éléments”. La
procédure est la suivante :

(1) On construit un “maillage” T de Ω (en triangles ou rectangles) que
l’on appelle éléments K.

(2) Dans chaque élément, on se donne des points que l’on appelle “noeuds”.
(3) On définit HN par :

HN =
{
u : Ω → R / u|K ∈ Pk, ∀K ∈ T

}
∩H,

où Pk désigne l’ensemble des polynômes de degré inférieur ou égal
à k. Le degré des polynômes est choisi de manière à ce que u soit
entièrement déterminée par ses valeurs aux noeuds. Pour une méth-
ode d’éléments finis de type Lagrange, les valeurs aux noeuds sont
également les “degrés de liberté”, c.à.d. les valeurs qui déterminent
entièrement la fonction recherchée.

(4) On construit une base {φi, . . . , φN} de HN tel que le support de
φi soit “le plus petit possible”. Les fonctions φi sont aussi appelées
fonctions de forme.

7.1.1. Exemple en dimension 1. Soit Ω =]0, 1[⊂ R et soit H = H1
0 ([0, 1[). On

cherche un espace HN d’approximation de H. Pour cela, on divise l’intervalle
]0, 1[ en N intervalles de longueur

h =
1

N + 1
.

On pose xi = i, i = 0, . . . , N + 1.
Les étapes 1. à 4. décrites précédemment donnent dans ce cas :
(1) Construction des éléments. On a construit n+ 1 éléments Ki =

]xi, xi+1[, i = 0, . . . , N .
(2) Noeuds. On a deux noeuds par élément, (xi et xi+1 sont les noeuds

de Ki, i = 0, . . . , N). Le fait que HN ⊂ H1
0 (]0, 1[) impose que les

fonctions de HN soient nulles en x0 = 0 et xN+1 = 1. On appelle
x1, . . . , xN les noeuds libres et x0, xN+1 les noeuds liés. Les degrés
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de liberté sont donc les valeurs de u en x1, . . . , xN . Aux noeuds liés,
on a u(x0) = u(xN+1) = 0.

(3) Choix de l’espace. On choisit comme espace de polynôme :

P1 = {ax+ b, a, b ∈ R}

et on pose :

HN =
{
u : Ω → R

∣∣∣ u|Ki ∈ P1, ∀i ∈ {1, . . . , N}, u ∈ C0(Ω), u(0) = u(1) = 0
}
.

Rappelons que H = H1
0 (]0, 1[) ⊂ C([0, 1]). Avec le choix de HN , on

a bien HN ⊂ H.
(4) Choix de la base de HN .

On peut définir φi pour i = 1 à N par :
φi : affine par morceaux, continue,

supp(φi) = [xi−1, xi+1],

φi(xi) = 1,

φi(xi−1) = φi(xi+1) = 0,

Il est facile de voir que φi ∈ HN et que {φ1, . . . , φN} engendre HN , c’est à
dire que pour tout u ∈ HN , il existe (u1, . . . , uN ) ∈ RN tel que

u =
N∑
i=1

uiφi.

7.1.2. Exemple en dimension 2. Soit Ω un ouvert polygonal de R2, et H =
H1

0 (Ω). Les étapes de construction de la méthode des éléments finis sont
encore les mêmes.

(1) Éléments : on choisit des triangles.
(2) Noeuds : on les place aux sommets des triangles. Les noeuds xi ∈ Ω

(intérieurs à Ω) sont libres, et les noeuds xi ∈ ∂Ω (sur la frontière de
Ω) sont liés. On notera Σ l’ensemble des noeuds libres, ΣF l’ensemble
des noeuds liés, et Σ = ΣI ∪ ΣF .

(3) Espace d’approximation. L’espace des polynômes est l’ensemble
des fonctions affines, noté P1. Une fonction p ∈ P1 est de la forme :

p : R2 → R, x = (x1, x2) 7→ a1x1 + a2x2 + b,

avec (a1, a2, b) ∈ R3. L’espace d’approximation HN est donc défini
par :

HN =
{
u ∈ C(Ω); u|K ∈ P1, ∀K, et u(xi) = 0, ∀xi ∈ ΣF

}
.

(4) Base de HN : On choisit comme base de HN la famille de fonctions
{φi}i=1,...,N , où N = card(ΣI), où φi est définie, pour i = 1 à N , par
: 

φi est affine par morceaux,
φi(xi) = 1,

φi(xj) = 0, ∀j ̸= i.
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En résumé. Les questions à se poser pour construire une méthode d’éléments
finis sont donc :

(1) La construction du maillage.
(2) Un choix cohérent entre éléments, noeuds et espace des polynômes.
(3) La construction de l’espace d’approximation HN et de sa base {φi}i=1...N .
(4) La construction de la matrice de rigidité K et du second membre G.
(5) L’évaluation de d(u,HN ) en vue de l’analyse de convergence.

Pour construire les éléments, il faut éviter les angles trop grands ou trop
petits. Il faut mettre beaucoup d’éléments là où u varie rapidement (ceci ne
peut se faire que si on connait a priori les zones de de variation rapide, ou si
on a les moyens d’évaluer l’erreur entre la solution exacte du problème et la
solution calculée et de remailler les zones ou celle–ci est jugée trop grande.

On a vu aux paragraphes précédents que l’erreur entre la solution exacte u
recherchée et la solution u(N) obtenue par la méthode de Ritz ou de Galerkin
est majorée par une constante fois la distance entre H et HN . On a donc
intérêt à ce que cette distance soit petite. Pour ce faire, il paraît raisonnable
d’augmenter la dimension de l’espace HN . Pour cela, on a deux possibilités

• augmenter le nombre d’éléments : on augmente alors aussi le nombre
global de noeuds, mais pas le nombre local.

• augmenter le degré des polynômes : on augmente alors le nombre de
noeuds local, donc on augmente aussi le nombre global de noeuds,
mais pas le nombre d’éléments. Ce deuxième choix (augmentation
du degré des polynômes) ne peut se faire que si la solution est suff-
isamment régulière ; si la solution n’est pas régulière, on n’arrivera
pas à diminuer d(H,HN ) en augmentant le degré des polynômes.

7.2. Convergence des éléments finis P1 en dimension 1. On note
l’espace des éléments finis P1

Vh :=
{
v ∈ C([0, 1]) tel que v

∣∣
[xj ,xj+1]

∈ P1 pour tout 0 ⩽ j ⩽ n
}

et le sous-espace des fonctions s’annulant aux bords

V 0
h := {v ∈ Vh | v(0) = v(1) = 0}.

7.2.1. Énoncé du théorème de convergence. La méthode des éléments finis
est une méthode de Galerkin où l’espace variationnel est V 0

h . On se place en
dimension 1, et Ω =]0, 1[. Le problème de Galerkin définit uh ∈ V 0

h via∫ 1

0
u′hv

′
h =

∫ 1

0
fvh, ∀vh ∈ V 0

h . (69)

Theorem 7.1 (Convergence de la méthode P1). Soit u ∈ C2([0, 1]) la solu-
tion de (68) et soit uh ∈ V 0

h la solution de (69). La méthode des éléments
finis P1 converge, c’est-à-dire qu’il existe une constante C indépendante de
h et de f telle que

∥(u− uh)
′∥L2(0,1) ⩽ Ch ∥f∥L2(0,1).
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7.2.2. Preuve du théorème 7.1.

Definition 7.2 (Opérateur d’interpolation P1). On appelle opérateur d’interpolation
P1 l’application linéaire rh de C([0, 1]) dans Vh définie, pour tout v ∈ C([0, 1]),
par

(rhv)(x) :=

n+1∑
j=0

v(xj)φj(x)

Par un dessin, on voit que rhv est la fonction affine par morceaux qui
coïncide avec v sur les sommets du maillage xj .

On commence par montrer le lemme technique suivant.

Lemma 7.3. Il existe une constante C indépendante de h telle que, pour
tout v ∈ C2([0, 1]),

∥v − rhv∥L2(0,1) ⩽ h2 ∥v′′∥L2(0,1), (70)

et

∥v′ − (rhv)
′∥L2(0,1) ⩽ h ∥v′′∥L2(0,1). (71)

Proof. Soit v ∈ C2([0, 1]). Par définition, l’interpolée rhv est une fonction
affine. Pour tout x ∈]xj , xj+1[, on a

(rhv)(x) = v(xj) +
v(xj+1)− v(xj)

xj+1 − xj
(x− xj). (72)

donc

v(x)− rhv(x) =
(72)

v(x)−
(
v(xj) +

v(xj+1)− v(xj)

xj+1 − xj
(x− xj)

)
=

∫ x

xj

v′ − x− xj
xj+1 − xj

∫ xj+1

xj

v′

= (x− xj) v
′(xj + θx)− (x− xj) v

′(xj + θj)

= (x− xj)

∫ xj+θj

xj+θx

v′′(t) dt,

par application de la formule des accroissements finis (il existe un y tel que la
fonction passe par sa moyenne) avec 0 ⩽ θx ⩽ x−xj et 0 ⩽ θj ⩽ xj+1−xj =
h. On en déduit, en utilisant l’inégalité de Cauchy–Schwarz,

|v(x)− rhv(x)|2 ⩽ h2

(∫ xj+1

xj

|v′′(t)| dt

)2

⩽ h3
∫ xj+1

xj

|v′′(t)|2 dt.

En intégrant par rapport à x sur l’intervalle [xj , xj+1], on obtient∫ xj+1

xj

|v(x)− rhv(x)|2 dx ⩽ h4
∫ xj+1

xj

|v′′(t)|2 dt,

ce qui, par sommation en j, donne exactement (70).
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La démonstration de (71) est tout à fait similaire : pour v ∈ C2([0, 1]) et
x ∈]xj , xj+1[, on écrit

v′(x)− (rhv)
′(x) = v′(x)− v(xj+1)− v(xj)

h

=
1

h

∫ xj+1

xj

(
v′(x)− v′(t)

)
dt =

1

h

∫ xj+1

xj

∫ x

t
v′′(y) dy dt.

donc en appliquant Cauchy-Schwarz deux fois

∣∣v′(x)− (rhv)
′(x)

∣∣2 ⩽ 1

h2

(∫ xj+1

xj

∫ x

t
v′′(y) dy dt.

)2

⩽
1

h

∫ xj+1

xj

(∫ x

t
v′′
)2

dt

⩽
∫ xj+1

xj

dt

∫ x

t

∣∣v′′∣∣2 ⩽ ∫ xj+1

xj

dt

∫ xj+1

xj

∣∣v′′∣∣2
= h

∫ xj+1

xj

∣∣v′′∣∣2 .
□

Ceci prouve le lemme suivant

Lemma 7.4 (D’interpolation). Soit rh l’opérateur d’interpolation P1. Il
existe une constante C indépendante de h telle que, pour tout v ∈ C2([0, 1])
et tout h ∈]0, 1],

∥v − rhv∥H1(0,1) ⩽
√
2h∥v′′∥L2(0,1). (73)

On peut maintenant prouver le théorème en utilisant Céa. On définit
l’espace

W := {v ∈ H1([0, 1],R) | v(0) = v(1) = 0},

muni du produit scalaire

⟨φ, ϕ⟩W :=

∫ 1

0
φ′ϕ′,

on note la norme associée ||·||V0
.

Lemma 7.5. L’application ||·||V0
est une norme sur H1

0 ([0, 1]).

Proof. On a la positivité, l’homogénéité et l’inégalité triangulaire. On justifie
la séparation. Soit w ∈ H1

0 ([0, 1]) telle que ||w||V0
= 0. Alors w′ = 0 et comme

H1([0, 1]) ⊂ C0([0, 1]), w est constante. Puisque w(0) = 0, alors w = 0. □

Nous souhaitons appliquer le lemme de Céa. Il faut vérifier que a est
bilinéaire continue symétrique coercive et que T est continue, tout cela pour
l’espace V0. On a a(v, v) = ||v||2V0

donc a est 1-coercive. De plus, |a(v, u)| ⩽
||v′||L2 ||u′||L2 = ||v||V0

||u||V0
donc a est continue avec M = 1. On laisse les

autres propriétés en exercice, et on peut appliquer le lemme de Céa.
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On majore l’estimation en choisissant vh = rhu qui est bien un élément
de V 0

h∣∣∣∣(u− uh)
′∣∣∣∣

L2 = ||u− uh||V0
⩽
Céa

Théorème 6.4
(63)

inf
w∈V 0

h

||u− w||V0

⩽
rhu∈Vh

||u− rhu||V0
⩽ ||u− rhu||H1 ⩽

(73)

√
2h
∣∣∣∣v′′∣∣∣∣

L2(0,1)

=
√
2h ||f ||L2(0,1) .
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